GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES

被引:47
|
作者
Brennecke, Christian [1 ]
Schlein, Benjamin [1 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
来源
ANALYSIS & PDE | 2019年 / 12卷 / 06期
关键词
Bose-Einstein condensates; quantum dynamics; Gross-Pitaevskii equation; NONLINEAR SCHRODINGER-EQUATION; MEAN-FIELD APPROXIMATION; RIGOROUS DERIVATION; INTERACTING BOSONS; SCATTERING THEORY; QUANTUM; LIMIT; FLUCTUATIONS; UNIQUENESS; HIERARCHY;
D O I
10.2140/apde.2019.12.1513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time-evolution of initially trapped Bose-Einstein condensates in the Gross-Pitaevskii regime. We show that condensation is preserved by the many-body evolution and that the dynamics of the condensate wave function can be described by the time-dependent Gross-Pitaevskii equation. With respect to previous works, we provide optimal bounds on the rate of condensation (i.e., on the number of excitations of the Bose-Einstein condensate). To reach this goal, we combine the method of Lewin, Nam and Schlein (2015), who analyzed fluctuations around the Hartree dynamics for N-particle initial data in the mean-field regime, with ideas of Benedikter, de Oliveira and Schlein (2015), who considered the evolution of Fock-space initial data in the Gross-Pitaevskii regime.
引用
收藏
页码:1513 / 1596
页数:84
相关论文
共 50 条
  • [1] The Gross-Pitaevskii equation and Bose-Einstein condensates
    Rogel-Salazar, J.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (02) : 247 - 257
  • [2] Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence
    Abid, M
    Huepe, C
    Metens, S
    Nore, C
    Pham, CT
    Tuckerman, LS
    Brachet, ME
    [J]. FLUID DYNAMICS RESEARCH, 2003, 33 (5-6) : 509 - 544
  • [3] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    [J]. CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [4] Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations
    PerezGarcia, VM
    Michinel, H
    Cirac, JI
    Lewenstein, M
    Zoller, P
    [J]. PHYSICAL REVIEW A, 1997, 56 (02): : 1424 - 1432
  • [5] Dynamics of Solutions to the Gross-Pitaevskii Equation Describing Dipolar Bose-Einstein Condensates
    Bellazzini, Jacopo
    Forcella, Luigi
    [J]. QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 : 25 - 57
  • [6] Bose-Einstein condensates: Analytical methods for the Gross-Pitaevskii equation
    Trallero-Giner, Carlos
    Drake, J.
    Lopez-Richard, V.
    Trallero-Herrero, C.
    Birman, Joseph L.
    [J]. PHYSICS LETTERS A, 2006, 354 (1-2) : 115 - 118
  • [7] Bose-Einstein condensates and the numerical solution of the Gross-Pitaevskii equation
    Succi, S
    Toschi, F
    Tosi, MP
    Vignolo, P
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (06) : 48 - 57
  • [8] Gross-Pitaevskii model for nonzero temperature Bose-Einstein condensates
    Staliunas, Kestutis
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (09): : 2713 - 2719
  • [9] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [10] Singularity formation in the Gross-Pitaevskii equation and collapse in Bose-Einstein condensates
    Rybin, AV
    Vadeiko, IP
    Varzugin, GG
    Timonen, J
    [J]. PHYSICAL REVIEW A, 2004, 69 (02): : 6