Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence

被引:44
|
作者
Abid, M
Huepe, C
Metens, S
Nore, C
Pham, CT
Tuckerman, LS
Brachet, ME
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
[4] CNRS, UMR 6594, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[5] Univ Aix Marseille 1, F-13384 Marseille, France
[6] Univ Aix Marseille 2, F-13384 Marseille, France
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[8] Univ Paris 07, Lab Phys Theor Mat Condensee, F-75005 Paris, France
[9] Lab Informat Mecan & Sci Ingn, F-91403 Orsay, France
关键词
superfluid turbulence; Bose-Einstein condensates; Gross-Pitaevskii equation; bifurcation and dynamics; exact results; branch following method;
D O I
10.1016/j.fluiddyn.2003.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Gross-Pitaevskii equation, also called the nonlinear Schrodinger equation (NLSE), describes the dynamics of low-temperature superflows and Bose-Einstein Condensates (BEC). We review some of our recent NLSE-based numerical studies of superfluid turbulence and BEC stability. The relations with experiments are discussed. (C) 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 544
页数:36
相关论文
共 50 条
  • [1] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [2] The Gross-Pitaevskii equation and Bose-Einstein condensates
    Rogel-Salazar, J.
    EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (02) : 247 - 257
  • [3] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [4] Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations
    PerezGarcia, VM
    Michinel, H
    Cirac, JI
    Lewenstein, M
    Zoller, P
    PHYSICAL REVIEW A, 1997, 56 (02): : 1424 - 1432
  • [5] Dynamics of Solutions to the Gross-Pitaevskii Equation Describing Dipolar Bose-Einstein Condensates
    Bellazzini, Jacopo
    Forcella, Luigi
    QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 : 25 - 57
  • [6] Bose-Einstein condensates: Analytical methods for the Gross-Pitaevskii equation
    Trallero-Giner, Carlos
    Drake, J.
    Lopez-Richard, V.
    Trallero-Herrero, C.
    Birman, Joseph L.
    PHYSICS LETTERS A, 2006, 354 (1-2) : 115 - 118
  • [7] Bose-Einstein condensates and the numerical solution of the Gross-Pitaevskii equation
    Succi, S
    Toschi, F
    Tosi, MP
    Vignolo, P
    COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (06) : 48 - 57
  • [8] Gross-Pitaevskii model for nonzero temperature Bose-Einstein condensates
    Staliunas, Kestutis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (09): : 2713 - 2719
  • [9] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [10] Singularity formation in the Gross-Pitaevskii equation and collapse in Bose-Einstein condensates
    Rybin, AV
    Vadeiko, IP
    Varzugin, GG
    Timonen, J
    PHYSICAL REVIEW A, 2004, 69 (02): : 6