Soliton Solutions and Collisions for the Multicomponent Gross-Pitaevskii Equation in Spinor Bose-Einstein Condensates

被引:1
|
作者
Wang, Ming [1 ]
He, Guo-Liang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR SCHRODINGER MODEL; OPTICAL-FIBERS; TRANSFORMATION; BRIGHTONS;
D O I
10.1155/2020/4632434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate a five-component Gross-Pitaevskii equation, which is demonstrated to describe the dynamics of an F = 2 spinor Bose-Einstein condensate in one dimension. By employing the Hirota method with an auxiliary function, we obtain the explicit bright one- and two-soliton solutions for the equation via symbolic computation. With the choice of polarization parameter and spin density, the one-soliton solutions are divided into four types: one-peak solitons in the ferromagnetic and cyclic states and one- and two-peak solitons in the polar states. For the former two, solitons share the similar shape of one peak in all components. Solitons in the polar states have the one- or two-peak profiles, and the separated distance between two peaks is inversely proportional to the value of polarization parameter. Based on the asymptotic analysis, we analyze the collisions between two solitons in the same and different states.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Gross-Pitaevskii equation and Bose-Einstein condensates
    Rogel-Salazar, J.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (02) : 247 - 257
  • [2] Ground band and a generalized Gross-Pitaevskii equation for spinor Bose-Einstein condensates
    Bao, CG
    Li, ZB
    [J]. PHYSICAL REVIEW A, 2004, 70 (04): : 043620 - 1
  • [3] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    [J]. CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [4] Dynamics of Solutions to the Gross-Pitaevskii Equation Describing Dipolar Bose-Einstein Condensates
    Bellazzini, Jacopo
    Forcella, Luigi
    [J]. QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 : 25 - 57
  • [5] Bose-Einstein condensates and the numerical solution of the Gross-Pitaevskii equation
    Succi, S
    Toschi, F
    Tosi, MP
    Vignolo, P
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (06) : 48 - 57
  • [6] Bose-Einstein condensates: Analytical methods for the Gross-Pitaevskii equation
    Trallero-Giner, Carlos
    Drake, J.
    Lopez-Richard, V.
    Trallero-Herrero, C.
    Birman, Joseph L.
    [J]. PHYSICS LETTERS A, 2006, 354 (1-2) : 115 - 118
  • [7] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    [J]. ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [8] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [9] Singularity formation in the Gross-Pitaevskii equation and collapse in Bose-Einstein condensates
    Rybin, AV
    Vadeiko, IP
    Varzugin, GG
    Timonen, J
    [J]. PHYSICAL REVIEW A, 2004, 69 (02): : 6
  • [10] LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates
    Kong, Linghua
    Hong, Jialin
    Zhang, Jingjing
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) : 219 - 241