A study on Two-stage self-organizing map suitable for clustering problems

被引:0
|
作者
Kato, Satoru [1 ]
Koike, Kenta [2 ]
Horiuchi, Tadashi [1 ]
Itoh, Yoshio [3 ]
机构
[1] Matsue Natl Coll Technol, Matsue, Shimane 6908518, Japan
[2] Crestron Japan Co, Matsue, Shimane 6900011, Japan
[3] Tottori Univ, Tottori 6808552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a two-stage self-organizing map algorithm what we call Two-stage SOM which combines Kohonen's basic SOM (BSOM) and Aoki's SOM with threshold operation (THSOM). In the first stage of Two-stage SOM, we use BSOM algorithm in order to acquire topological structure of input data, and then we apply THSOM algorithm so that inactivated code-vectors move to appropriate region reflecting the distribution of the input data. Furthermore, we show that Two-stage SOM can be applied to clustering problems. Some experimental results reveal that Two-stage SOM is effective for clustering problems in comparison with conventional methods.
引用
收藏
页码:620 / +
页数:2
相关论文
共 50 条
  • [41] THE SELF-ORGANIZING MAP
    KOHONEN, T
    [J]. PROCEEDINGS OF THE IEEE, 1990, 78 (09) : 1464 - 1480
  • [42] Fusion of self-organizing map and granular self-organizing map for microblog summarization
    Naveen Saini
    Sriparna Saha
    Sahil Mansoori
    Pushpak Bhattacharyya
    [J]. Soft Computing, 2020, 24 : 18699 - 18711
  • [43] Multistrategy Self-Organizing Map Learning for Classification Problems
    Hasan, S.
    Shamsuddin, S. M.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [44] Fusion of self-organizing map and granular self-organizing map for microblog summarization
    Saini, Naveen
    Saha, Sriparna
    Mansoori, Sahil
    Bhattacharyya, Pushpak
    [J]. SOFT COMPUTING, 2020, 24 (24) : 18699 - 18711
  • [45] Clustering and visualization of bankruptcy trajectory using self-organizing map
    Chen, Ning
    Ribeiro, Bernardete
    Vieira, Armando
    Chen, An
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (01) : 385 - 393
  • [46] A self-organizing map based approach for document clustering and visualization
    Yen, Gary G.
    Wu, Zheng
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3279 - +
  • [47] A Self-Organizing Map Clustering Approach to Support Territorial Zoning
    da Silva, Marcos A. S.
    Barreto, Pedro V. de A.
    Matos, Leonardo N.
    Miranda Junior, Gastao F.
    Dompieri, Marcia H. G.
    de Moura, Fabio R.
    Resende, Fabricia K. S.
    Novais, Paulo
    Oliveira, Pedro
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 272 - 286
  • [48] Self-Organizing Map for Multi-view Text Clustering
    Fraj, Maha
    Ben Hajkacem, Mohamed Aymen
    Essoussi, Nadia
    [J]. BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2020), 2020, 12393 : 396 - 408
  • [49] ConSOM: A conceptional self-organizing map model for text clustering
    Liu, Yuanchao
    Wang, Xiaolong
    Wu, Chong
    [J]. NEUROCOMPUTING, 2008, 71 (4-6) : 857 - 862
  • [50] Self-organizing map clustering based on continuous multiresolution entropy
    Torres, HM
    Gurlekian, JA
    Rufiner, HL
    Torres, ME
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 337 - 354