Self-organizing map clustering based on continuous multiresolution entropy

被引:6
|
作者
Torres, HM
Gurlekian, JA
Rufiner, HL
Torres, ME [1 ]
机构
[1] Univ Nacl Entre Rios, Fac Ingn, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina
[2] Hosp Clin Buenos Aires, Lab Invest Sensoriales, Consejo Nacl Invest Cient & Tecn, Inst Neurosciencias Aplicadas, Buenos Aires, DF, Argentina
[3] Univ Nacl Entre Rios, Fac Ingn, Lab Cibernet, Oro Verde, Entre Rios, Argentina
关键词
wavelet transform; continuous multiresolution entropy; self-organizing maps; nonlinear systems; speech segmentation;
D O I
10.1016/j.physa.2005.05.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The detection of changes in the parameter values of a nonlinear dynamic system is a branch of study with multiple applications. in this paper, we explore a variant of an automatic detector and clustering of slight parameter variations in nonlinear dynamic systems proposed by Torres et al. [Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools, Int. J. Bifure. Chaos 11(4) (2001) 967-981]. The new method takes the advantages of the continuous multiresolution entropy to localize slight changes ill the parameters, and uses self-organizing maps to quantify and cluster these changes. We discuss the performance of this method while applied to automatic segmentation of natural and synthetic diphthongs in the presence of additive noise. Our results show the potentiality of the proposed method. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 50 条
  • [1] Clustering of the self-organizing map
    Vesanto, J
    Alhoniemi, E
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 586 - 600
  • [2] Bi-clustering continuous data with self-organizing map
    Benabdeslem, Khalid
    Allab, Kais
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8): : 1551 - 1562
  • [3] Bi-clustering continuous data with self-organizing map
    Khalid Benabdeslem
    Kais Allab
    [J]. Neural Computing and Applications, 2013, 22 : 1551 - 1562
  • [4] Distance matrix based clustering of the Self-Organizing Map
    Vesanto, J
    Sulkava, M
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 951 - 956
  • [5] Clustering-Based Adaptive Self-Organizing Map
    Olszewski, Dominik
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT I, 2021, 12854 : 182 - 192
  • [6] Clustering of the Self-Organizing Time Map
    Sarlin, Peter
    Yao, Zhiyuan
    [J]. NEUROCOMPUTING, 2013, 121 : 317 - 327
  • [7] Gravitational Clustering of the Self-Organizing Map
    Ilc, Nejc
    Dobnikar, Andrej
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 11 - 20
  • [8] The Continuous Interpolating Self-organizing Map
    J. Göppert
    W. Rosentiel
    [J]. Neural Processing Letters, 1997, 5 : 185 - 192
  • [9] The continuous interpolating self-organizing map
    Goppert, J
    Rosenstiel, W
    [J]. NEURAL PROCESSING LETTERS, 1997, 5 (03) : 185 - 192
  • [10] A self-organizing map based approach for document clustering and visualization
    Yen, Gary G.
    Wu, Zheng
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3279 - +