Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap

被引:2
|
作者
Filipovic, Marina [1 ]
Dautremer, Thomas [2 ]
Comtat, Claude [1 ]
Stute, Simon [3 ,4 ]
Barat, Eric [2 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, INSERM,BioMaps,Serv Hosp Frederic Joliot, Orsay, France
[2] CEA, LIST, Lab Syst Modelling & Simulat, Gif Sur Yvette, France
[3] Univ Hosp, Nucl Med Dept, Nantes, France
[4] Univ Nantes, Univ Angers, CNRS, INSERM,CRCINA, Nantes, France
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 12期
关键词
PET image reconstruction; PET; MRI; posterior probability distribution; posterior bootstrap; uncertainty quantification; Bayesian inference; multimodal image reconstruction; EMISSION; ALGORITHM; VARIANCE;
D O I
10.1088/1361-6560/ac06e1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a detailed analysis and interpretation of produced posterior image distributions. We apply a recent posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP) (posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed and interpreted for several common Bayesian models. Their relationship with the distribution of the MAP image estimate over multiple dataset realizations is exposed. The coverage properties of posterior distributions are validated. More insight is obtained for the interpretation of posterior distributions in order to open the way for including uncertainty information into diagnostic and quantification tasks.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A MODIFIED APPROACH FOR CHANGE DETECTION USING CHANGE VECTOR ANALYSIS IN POSTERIOR PROBABILITY SPACE
    Azzouzi, S. A.
    Vidal, A.
    Bentounes, H. A.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 593 - 598
  • [42] Arthroscopic Posterior Glenoid Reconstruction Using a Fresh Distal Tibia Allograft for Recurrent Posterior Instability
    Cusano, Antonio
    Do, Andrew
    Parisien, Robert L.
    Li, Xinning
    ARTHROSCOPY TECHNIQUES, 2021, 10 (02): : E341 - E351
  • [43] Reconstruction of a Posterior Trunk Defect using a Pedicled Dorsolateral Posterior Intercostal Artery Perforator Flap
    Shin, Jun Chul
    Song, Jeong Hoon
    Heo, Woo Hoe
    ARCHIVES OF PLASTIC SURGERY-APS, 2014, 41 (05): : 598 - 600
  • [44] A REJECTION SAMPLING SCHEME FOR POSTERIOR PROBABILITY DISTRIBUTIONS VIA THE RATIO-OF-UNIFORMS METHOD
    Martino, Luca
    Miguez, Joaquin
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 174 - 178
  • [45] Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior
    Chao, JC
    Phillips, PCB
    JOURNAL OF ECONOMETRICS, 1998, 87 (01) : 49 - 86
  • [46] Posterior Glenoid Reconstruction Using a Distal Tibial Allograft
    Cooper, Joseph D.
    Ruzbarsky, Joseph J.
    Nolte, Philip-C
    Elrick, Bryant P.
    Millett, Peter J.
    ARTHROSCOPY TECHNIQUES, 2021, 10 (05): : e1227 - e1232
  • [47] Soft MIMO Detection Using Marginal Posterior Probability Statistics
    Zhang, Jiankun
    Wang, Hao
    Qian, Jing
    Gao, Zhenxing
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3198 - 3204
  • [48] MLIP: using multiple processors to compute the posterior probability of linkage
    Govil, Manika
    Segre, Alberto M.
    Vieland, Veronica J.
    BMC BIOINFORMATICS, 2008, 9 (Suppl 6)
  • [49] RECONSTRUCTION OF THE POSTERIOR CRUCIATE LIGAMENT USING THE SEMIMEMBRANOUS TENDON
    SOUTHMAYD, WW
    RUBIN, BD
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 1980, (150) : 196 - 197
  • [50] Inference of posterior inclusion probability of QTLs in Bayesian shrinkage analysis
    Yang, Deguang
    Han, Shanshan
    Jiang, Dan
    Yang, Runqing
    Fang, Ming
    GENETICS RESEARCH, 2015, 97 : e6