Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap

被引:2
|
作者
Filipovic, Marina [1 ]
Dautremer, Thomas [2 ]
Comtat, Claude [1 ]
Stute, Simon [3 ,4 ]
Barat, Eric [2 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, INSERM,BioMaps,Serv Hosp Frederic Joliot, Orsay, France
[2] CEA, LIST, Lab Syst Modelling & Simulat, Gif Sur Yvette, France
[3] Univ Hosp, Nucl Med Dept, Nantes, France
[4] Univ Nantes, Univ Angers, CNRS, INSERM,CRCINA, Nantes, France
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 12期
关键词
PET image reconstruction; PET; MRI; posterior probability distribution; posterior bootstrap; uncertainty quantification; Bayesian inference; multimodal image reconstruction; EMISSION; ALGORITHM; VARIANCE;
D O I
10.1088/1361-6560/ac06e1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a detailed analysis and interpretation of produced posterior image distributions. We apply a recent posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP) (posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed and interpreted for several common Bayesian models. Their relationship with the distribution of the MAP image estimate over multiple dataset realizations is exposed. The coverage properties of posterior distributions are validated. More insight is obtained for the interpretation of posterior distributions in order to open the way for including uncertainty information into diagnostic and quantification tasks.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] On exact posterior distributions using H-functions
    Andrade, J. A. A.
    Rathie, P. N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 459 - 475
  • [32] Posterior distributions for the Gini coefficient using grouped data
    Chotikapanich, D
    Griffiths, WE
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (04) : 383 - 392
  • [33] Approximate Marginal Posterior Distributions Using Asymptotic Modes
    Miyata, Yoichi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (07) : 1129 - 1140
  • [34] Approximating posterior distributions in belief networks using mixtures
    Bishop, CM
    Lawrence, N
    Jaakkola, T
    Jordan, MI
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 416 - 422
  • [35] Empirical Bayes analysis of spike and slab posterior distributions
    Castillo, Ismael
    Mismer, Romain
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3953 - 4001
  • [36] ANALYSIS OF POSTERIOR AVAILABILITY DISTRIBUTIONS OF SERIES AND PARALLEL SYSTEMS
    SHARMA, KK
    BHUTANI, RK
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (02): : 379 - 381
  • [37] ELEMENTARY ENTROPY MAXIMIZING PROBABILITY DISTRIBUTIONS - ANALYSIS AND INTERPRETATION
    WEBBER, MJ
    ECONOMIC GEOGRAPHY, 1976, 52 (03) : 218 - 227
  • [38] Posterior hypothalamic activation in paroxysmal hemicrania using PET
    Matharu, MS
    Cohen, AS
    Frackowiak, RSJ
    Goadsby, PJ
    CEPHALALGIA, 2005, 25 (10) : 859 - 859
  • [39] The analysis of posterior segment findings in term and premature infants using RetCam images
    Gursoy, Huseyin
    Bilgec, Mustafa Deger
    Erol, Nazmiye
    Basmak, Hikmet
    Colak, Ertugrul
    INTERNATIONAL OPHTHALMOLOGY, 2018, 38 (05) : 1879 - 1886
  • [40] The analysis of posterior segment findings in term and premature infants using RetCam images
    Huseyin Gursoy
    Mustafa Deger Bilgec
    Nazmiye Erol
    Hikmet Basmak
    Ertugrul Colak
    International Ophthalmology, 2018, 38 : 1879 - 1886