Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap

被引:2
|
作者
Filipovic, Marina [1 ]
Dautremer, Thomas [2 ]
Comtat, Claude [1 ]
Stute, Simon [3 ,4 ]
Barat, Eric [2 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, INSERM,BioMaps,Serv Hosp Frederic Joliot, Orsay, France
[2] CEA, LIST, Lab Syst Modelling & Simulat, Gif Sur Yvette, France
[3] Univ Hosp, Nucl Med Dept, Nantes, France
[4] Univ Nantes, Univ Angers, CNRS, INSERM,CRCINA, Nantes, France
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 12期
关键词
PET image reconstruction; PET; MRI; posterior probability distribution; posterior bootstrap; uncertainty quantification; Bayesian inference; multimodal image reconstruction; EMISSION; ALGORITHM; VARIANCE;
D O I
10.1088/1361-6560/ac06e1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a detailed analysis and interpretation of produced posterior image distributions. We apply a recent posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP) (posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed and interpreted for several common Bayesian models. Their relationship with the distribution of the MAP image estimate over multiple dataset realizations is exposed. The coverage properties of posterior distributions are validated. More insight is obtained for the interpretation of posterior distributions in order to open the way for including uncertainty information into diagnostic and quantification tasks.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] PET Reconstruction of the Posterior Image Probability, Including Multimodal Images
    Filipovic, Marina
    Barat, Eric
    Dautremer, Thomas
    Comtat, Claude
    Stute, Simon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (07) : 1643 - 1654
  • [2] On the Distributions of Bootstrap Support and Posterior Distributions for a Star Tree
    Susko, Edward
    SYSTEMATIC BIOLOGY, 2008, 57 (04) : 602 - 612
  • [3] Weighted Bayesian bootstrap for scalable posterior distributions
    Newton, Michael A.
    Polson, Nicholas G.
    Xu, Jianeng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 421 - 437
  • [4] DISTRIBUTIONS OF PRIOR AND POSTERIOR CLINICAL PROBABILITY ESTIMATES
    DAVIDOFF, F
    GOODSPEED, R
    TESTA, M
    CLIVE, J
    CLINICAL RESEARCH, 1985, 33 (02): : A718 - A718
  • [5] The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions
    Larget, Bret
    SYSTEMATIC BIOLOGY, 2013, 62 (04) : 501 - 511
  • [6] Analysis of Posterior Probability Uncertainty for Classification of Hyperspectral Images by SupportVector Machines
    Sun, Xiaoxia
    Li, Liwei
    Zhang, Bing
    Yang, Ling
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 22 - 25
  • [7] Change detection in multispectral images based on fusion of change vector analysis in posterior probability space and posterior probability space angle mapper
    Zakeri, Fatemeh
    Saradjian, Mohammad Reza
    GEOCARTO INTERNATIONAL, 2022, 37 (05) : 1450 - 1464
  • [9] A NOVEL REJECTION SAMPLING SCHEME FOR POSTERIOR PROBABILITY DISTRIBUTIONS
    Martino, Luca
    Miguez, Joaquin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2921 - 2924
  • [10] Comparing bootstrap and posterior probability values in the four-taxon case
    Cummings, MP
    Handley, SA
    Myers, DS
    Reed, DL
    Rokas, A
    Winka, K
    SYSTEMATIC BIOLOGY, 2003, 52 (04) : 477 - 487