The formation of super-dislocation/micropipe complexes in 6H-SiC

被引:4
|
作者
Giocondi, J [1 ]
Rohrer, GS
Skowronski, M
Balakrishna, V
Augustine, G
Hobgood, HM
Hopkins, RH
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Northrop Grumman Sci & Technol Ctr, Pittsburgh, PA 15235 USA
关键词
atomic force microscopy; micropipes; extended defects; dislocations;
D O I
10.4028/www.scientific.net/MSF.264-268.371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic force microscope images of surface/micropipe intersections on the (0001) growth surface of a 6H-SiC single crystal grown by the physical vapor transport method indicate that micropipes are associated with super-dislocations and that micron scale deposits of a heterogeneous phase are frequently found in the vicinity, of the defect. Based on our observations, we propose a model for the formation of super-dislocation/micropipe complexes that involves the coalescence of unit screw dislocations. The unit dislocations are forced together as large steps grow around heterogeneous material on the surface.
引用
收藏
页码:371 / 374
页数:4
相关论文
共 50 条
  • [1] Formation of super-dislocation/micropipe complexes in 6H-SiC
    Carnegie Mellon Univ, Pittsburgh, United States
    [J]. Materials Science Forum, 1998, 264-268 (pt 1): : 371 - 374
  • [2] An atomic force microscopy study of super-dislocation/micropipe complexes on the 6H-SiC(0001) growth surface
    Giocondi, J
    Rohrer, GS
    Skowronski, M
    Balakrishna, V
    Augustine, G
    Hobgood, HM
    Hopkins, RH
    [J]. JOURNAL OF CRYSTAL GROWTH, 1997, 181 (04) : 351 - 362
  • [3] Model for micropipe formation in 6H-SiC single crystal by sublimation method
    Liu, JL
    Gao, JQ
    Cheng, JK
    Yang, JF
    Qiao, GJ
    [J]. MATERIALS LETTERS, 2005, 59 (18) : 2374 - 2377
  • [4] Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy
    Rendakova, SV
    Nikitina, IP
    Tregubova, AS
    Dmitriev, VA
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 1998, 27 (04) : 292 - 295
  • [5] Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy
    S. V. Rendakova
    I. P. Nikitina
    A. S. Tregubova
    V. A. Dmitriev
    [J]. Journal of Electronic Materials, 1998, 27 : 292 - 295
  • [6] 6H-SiC diodes with cellular structure to avoid micropipe effects
    Badila, M
    Brezeanu, G
    Chante, JP
    Locatelli, ML
    Millan, J
    Godignon, P
    Lebedev, AA
    Lungu, P
    Banu, V
    [J]. SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 1355 - 1358
  • [7] Origin of the internal stress around the micropipe of 6H-SiC single crystal
    Kato, T
    Ohsato, H
    Okuda, T
    [J]. SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 449 - 452
  • [8] Micropipe and low-angle grain boundaries in 6H-SiC single crystal
    Han, Rong-Jiang
    Wang, Ji-Yang
    Hu, Xiao-Bo
    Xu, Xian-Gang
    Dong, Jie
    Li, Xian-Xiang
    Jiang, Min-Hua
    [J]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2004, 33 (03):
  • [9] The photoelastic constant and internal stress around micropipe defects of 6H-SiC single crystal
    Kato, T
    Ohsato, H
    Okamoto, A
    Sugiyama, N
    Okuda, T
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 57 (02): : 147 - 149
  • [10] IMPACT IONIZATION AND SUPER-LATTICE IN 6H-SIC
    DMITRIEV, AP
    KONSTANTINOV, AO
    LITVIN, DP
    SANKIN, VI
    [J]. SOVIET PHYSICS SEMICONDUCTORS-USSR, 1983, 17 (06): : 686 - 689