Computation of multiple pitchfork bifurcation points

被引:0
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1997年 / 77卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A point (x*,lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(z, lambda) = 0, F : R-n x R-1 --> R-n, if rank partial derivative(s)F(x*, lambda*) = n - 1 and if the Ljapunov-Schmidt reduced equation has the normal form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G : Rn+2--> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Numerical tests show the influence on the convergence behavior of the starting point and of the bordering vectors used in the definition of the extended system.
引用
收藏
页码:S449 / S452
页数:4
相关论文
共 50 条