NUMERICAL COMPUTATION OF SADDLE-NODE HOMOCLINIC BIFURCATION POINTS

被引:21
|
作者
SCHECTER, S
机构
[1] North Carolina State Univ, Raleigh, NC
关键词
SADDLE-NODE HOMOCLINIC BIFURCATION; CONVERGENCE; STABILITY; BOUNDARY-VALUE PROBLEM; MELNIKOV INTEGRAL; VARIATIONAL EQUATION;
D O I
10.1137/0730060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two-parameter families of vector fields there can be curves in the parameter plane along which orbits homoclinic to hyperbolic equilibria occur. Such curves can end at a point where there is an orbit homoclinic to an equilibrium undergoing saddle-node or transcritical bifurcation. Convergence and stability results are presented for a method of approximating these special parameter values and their associated homoclinic orbits.
引用
收藏
页码:1155 / 1178
页数:24
相关论文
共 50 条
  • [1] Excitability in a model with a saddle-node homoclinic bifurcation
    Dilao, R
    Volford, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (02): : 419 - 434
  • [2] Saddle-node bifurcation of homoclinic orbits in singular systems
    Battelli, F
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (01) : 203 - 218
  • [3] Saddle-Node Bifurcation and Homoclinic Persistence in AFMs with Periodic Forcing
    Gutierrez Gutierrez, Alexander
    Cortes Zapata, Daniel
    Castro Guevara, Diego Alexander
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [4] Fast computation for saddle-node bifurcation points of general nonlinear system with decoupled parameters
    Chiang, HD
    Wang, CS
    JeanJumeau, R
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 36 - 39
  • [5] Shift of saddle-node bifurcation points in modulated Henon map
    Solorio, JMS
    Pisarchik, AN
    Aboites, V
    REVISTA MEXICANA DE FISICA, 2002, 48 (04) : 290 - 294
  • [6] Saddle-node bifurcation of viscous profiles
    Achleitner, Franz
    Szmolyan, Peter
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (20) : 1703 - 1717
  • [7] Shilnikov's saddle-node bifurcation
    Glendinning, P
    Sparrow, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1153 - 1160
  • [8] A DOUBLE SADDLE-NODE BIFURCATION THEOREM
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2923 - 2933
  • [9] On saddle-node bifurcation and chaos of satellites
    Beda, PB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4881 - 4886
  • [10] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Tsinghua Univ, Beijing, China
    Dyn Stab Syst, 4 (325-346):