NUMERICAL COMPUTATION OF SADDLE-NODE HOMOCLINIC BIFURCATION POINTS

被引:21
|
作者
SCHECTER, S
机构
[1] North Carolina State Univ, Raleigh, NC
关键词
SADDLE-NODE HOMOCLINIC BIFURCATION; CONVERGENCE; STABILITY; BOUNDARY-VALUE PROBLEM; MELNIKOV INTEGRAL; VARIATIONAL EQUATION;
D O I
10.1137/0730060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two-parameter families of vector fields there can be curves in the parameter plane along which orbits homoclinic to hyperbolic equilibria occur. Such curves can end at a point where there is an orbit homoclinic to an equilibrium undergoing saddle-node or transcritical bifurcation. Convergence and stability results are presented for a method of approximating these special parameter values and their associated homoclinic orbits.
引用
收藏
页码:1155 / 1178
页数:24
相关论文
共 50 条