NUMERICAL COMPUTATION OF SADDLE-NODE HOMOCLINIC BIFURCATION POINTS

被引:21
|
作者
SCHECTER, S
机构
[1] North Carolina State Univ, Raleigh, NC
关键词
SADDLE-NODE HOMOCLINIC BIFURCATION; CONVERGENCE; STABILITY; BOUNDARY-VALUE PROBLEM; MELNIKOV INTEGRAL; VARIATIONAL EQUATION;
D O I
10.1137/0730060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two-parameter families of vector fields there can be curves in the parameter plane along which orbits homoclinic to hyperbolic equilibria occur. Such curves can end at a point where there is an orbit homoclinic to an equilibrium undergoing saddle-node or transcritical bifurcation. Convergence and stability results are presented for a method of approximating these special parameter values and their associated homoclinic orbits.
引用
收藏
页码:1155 / 1178
页数:24
相关论文
共 50 条
  • [11] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Bai, FS
    Champneys, AR
    DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (04): : 325 - 346
  • [12] The transversal homoclinic point of a saddle-node implies horseshoe
    李伟固
    Science China Mathematics, 1999, (07) : 699 - 703
  • [13] Polynomial estimates and discrete saddle-node homoclinic orbits
    Hüls, T
    Zou, YK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 115 - 126
  • [14] SADDLE-NODE BIFURCATIONS OF MULTIPLE HOMOCLINIC SOLUTIONS IN ODES
    Lin, Xiao-Bin
    Zhu, Changrong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1435 - 1460
  • [15] The transversal homoclinic point of a saddle-node implies horseshoe
    Weigu Li
    Science in China Series A: Mathematics, 1999, 42 : 699 - 703
  • [16] Homoclinic saddle-node bifurcations in singularly perturbed systems
    Doelman A.
    Hek G.
    Journal of Dynamics and Differential Equations, 2000, 12 (1) : 169 - 216
  • [17] The transversal homoclinic point of a saddle-node implies horseshoe
    Li, WG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (07): : 699 - 703
  • [18] Discontinuous impedance near a saddle-node bifurcation
    Berthier, F
    Diard, JP
    Montella, C
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 410 (02): : 247 - 249
  • [19] THE SADDLE-NODE SEPARATRIX-LOOP BIFURCATION
    SCHECTER, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (04) : 1142 - 1156
  • [20] Numerical study of saddle-node bifurcation for longitudinal flight with CFD/RBD technique
    Chen Qi
    Yuan Xianxu
    Wang Xinguang
    Chen Jianqiang
    Xie Yufei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 29 : 153 - 162