On flows of an incompressible fluid with a discontinuous power-law-like rheology

被引:13
|
作者
Gwiazda, Piotr
Malek, Josef
Swierczewska, Agnieszka
机构
[1] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] Charles Univ Prague, Inst Math, Prague 18675 8, Czech Republic
关键词
maximal monotone operators; Young measures; energy equality; non-Newtonian fluids;
D O I
10.1016/j.camwa.2006.02.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the mathematical theory for steady and unsteady flows of fluids with discontinuous constitutive equations. We consider a model for a fluid that at certain critical values of the shear rate exhibits jumps in the generalized viscosity of a power-law type. Using tools such as Young measures, maximal monotone operators, compact embeddings and energy equality, we prove the existence of a solution to the problem under consideration. In this approach, Galerkin approximations converge strongly to the solution of the original problem. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [41] Discontinuous Galerkin Method for Incompressible Two-Phase Flows
    Gerstenberger, Janick
    Burbulla, Samuel
    Kroner, Dietmar
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 675 - 683
  • [42] A coupled continuous and discontinuous finite element method for the incompressible flows
    Gao, Puyang
    Ouyang, Jie
    Dai, Pengfei
    Zhou, Wen
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 84 (08) : 477 - 493
  • [43] A SIMPLE based discontinuous Galerkin solver for steady incompressible flows
    Klein, Benedikt
    Kummer, Florian
    Oberlack, Martin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 237 : 235 - 250
  • [44] A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids
    Zhang, Fan
    Cheng, Jian
    Liu, Tiegang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [45] A discontinuous conically symmetric flow of an ideal incompressible fluid
    Shablovskiy, Oleg N.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (88): : 149 - 163
  • [46] RHEOLOGY OF POWER LAW FLUIDS
    HYMAN, WA
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1976, 15 (03): : 215 - 218
  • [47] An inverse methodology for the rheology of a power-law non-Newtonian fluid
    Bandulasena, H. C. H.
    Zimmerman, W. B.
    Rees, J. M.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2008, 222 (05) : 761 - 768
  • [48] NUMERICAL SIMULATION OF STRATIFIED FLOWS OF INCOMPRESSIBLE FLUID
    Yu. I
    Shokin
    V
    M .BeloliPetsky
    V.Yu.Kostyuk
    [J]. 计算物理, 1988, (01) : 113 - 128
  • [49] Method SMIF for Incompressible Fluid Flows Modeling
    Gushchin, Valentin
    Matyushin, Pavel
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 311 - 318
  • [50] A unified framework for incompressible and compressible fluid flows
    DING, Li
    MERKLE, Charles L.
    [J]. J Hydrodyn, 3 SUPPL. (113-119):