On flows of an incompressible fluid with a discontinuous power-law-like rheology

被引:13
|
作者
Gwiazda, Piotr
Malek, Josef
Swierczewska, Agnieszka
机构
[1] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] Charles Univ Prague, Inst Math, Prague 18675 8, Czech Republic
关键词
maximal monotone operators; Young measures; energy equality; non-Newtonian fluids;
D O I
10.1016/j.camwa.2006.02.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the mathematical theory for steady and unsteady flows of fluids with discontinuous constitutive equations. We consider a model for a fluid that at certain critical values of the shear rate exhibits jumps in the generalized viscosity of a power-law type. Using tools such as Young measures, maximal monotone operators, compact embeddings and energy equality, we prove the existence of a solution to the problem under consideration. In this approach, Galerkin approximations converge strongly to the solution of the original problem. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [31] Conditions for crust and tube formation in lava flows with power-law rheology
    Filippucci, M.
    Tallarico, A.
    Dragoni, M.
    [J]. BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA, 2011, 52 (02) : 309 - 319
  • [32] Influence of power-law rheology on cell injury during microbubble flows
    H. L. Dailey
    S. N. Ghadiali
    [J]. Biomechanics and Modeling in Mechanobiology, 2010, 9 : 263 - 279
  • [33] Influence of power-law rheology on cell injury during microbubble flows
    Dailey, H. L.
    Ghadiali, S. N.
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2010, 9 (03) : 263 - 279
  • [34] Role of viscous dissipation in the dynamics of lava flows with power-law rheology
    Piombo, A.
    Dragoni, M.
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2011, 206 (3-4) : 88 - 95
  • [35] POWER-LAW FLUID FLOWS IN CHANNELS WITH A PERMEABLE WALL
    Martins-Costa, Maria Laura
    Puente Angulo, Jesus Alfonso
    da Costa Mattos, Herald S.
    [J]. JOURNAL OF POROUS MEDIA, 2013, 16 (07) : 647 - 661
  • [36] SHEAR MHD FLOWS OF A FLUID WITH A POWER RHEOLOGICAL LAW.
    Pavlov, K.B.
    [J]. Magnetohydrodynamics (English translation of Magnitaya Gidrodinamika), 1972, 8 (03): : 409 - 411
  • [37] Filling of the one-dimensional lattice by k-mers proceeds via fast power-law-like kinetics
    Ranjith, Padinhateeri
    Marko, John F.
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):
  • [38] A SIMPLE based discontinuous Galerkin solver for steady incompressible flows
    Klein, Benedikt
    Kummer, Florian
    Oberlack, Martin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 237 : 235 - 250
  • [39] A Wavelet Based Adaptive Discontinuous Galerkin Method for Incompressible Flows
    Pinto, Brijesh
    Plata, Marta de la Llave
    Lamballais, Eric
    [J]. TURBULENCE AND INTERACTIONS (TI 2015), 2018, 135 : 207 - 215
  • [40] Discontinuous Galerkin Method for Incompressible Two-Phase Flows
    Gerstenberger, Janick
    Burbulla, Samuel
    Kroner, Dietmar
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 675 - 683