On flows of an incompressible fluid with a discontinuous power-law-like rheology

被引:13
|
作者
Gwiazda, Piotr
Malek, Josef
Swierczewska, Agnieszka
机构
[1] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] Charles Univ Prague, Inst Math, Prague 18675 8, Czech Republic
关键词
maximal monotone operators; Young measures; energy equality; non-Newtonian fluids;
D O I
10.1016/j.camwa.2006.02.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the mathematical theory for steady and unsteady flows of fluids with discontinuous constitutive equations. We consider a model for a fluid that at certain critical values of the shear rate exhibits jumps in the generalized viscosity of a power-law type. Using tools such as Young measures, maximal monotone operators, compact embeddings and energy equality, we prove the existence of a solution to the problem under consideration. In this approach, Galerkin approximations converge strongly to the solution of the original problem. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [1] On steady flows of incompressible fluids with implicit power-law-like rheology
    Bulicek, Miroslav
    Gwiazda, Piotr
    Malek, Josef
    Swierczewska-Gwiazda, Agnieszka
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (02) : 109 - 136
  • [2] FINITE ELEMENT APPROXIMATION OF STEADY FLOWS OF INCOMPRESSIBLE FLUIDS WITH IMPLICIT POWER-LAW-LIKE RHEOLOGY
    Diening, Lars
    Kreuzer, Christian
    Sueli, Endre
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 984 - 1015
  • [3] ADAPTIVE FINITE ELEMENT APPROXIMATION OF STEADY FLOWS OF INCOMPRESSIBLE FLUIDS WITH IMPLICIT POWER-LAW-LIKE RHEOLOGY
    Kreuzer, Christian
    Suli, Endre
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1333 - 1369
  • [4] MATHEMATICAL PROPERTIES OF FLOWS OF INCOMPRESSIBLE POWER-LAW-LIKE FLUIDS THAT ARE DESCRIBED BY IMPLICIT CONSTITUTIVE RELATIONS
    Malek, Josef
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 31 : 110 - 125
  • [5] MATHEMATICAL MODEL OF DISCONTINUOUS INCOMPRESSIBLE FLUID FLOWS
    GOLDSHTIK, MA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1962, 147 (06): : 1310 - &
  • [6] Power-law-like distributions in biomedical publications and research funding
    Andrew I Su
    John B Hogenesch
    [J]. Genome Biology, 8
  • [7] Power-law-like distributions in biomedical publications and research funding
    Su, Andrew I.
    Hogenesch, John B.
    [J]. GENOME BIOLOGY, 2007, 8 (04)
  • [8] Understanding the diversity on power-law-like degree distribution in social networks
    Xu, Xiao-Ting
    Wang, Nianxin
    Bian, Jun
    Zhou, Bin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 576 - 581
  • [9] Model-based fit procedure for power-law-like spectra
    Milotti, Edoardo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) : 834 - 844
  • [10] Cosmological evolution of Einstein-Aether models with power-law-like potential
    Hao Wei
    Xiao-Peng Yan
    Ya-Nan Zhou
    [J]. General Relativity and Gravitation, 2014, 46