Histogram clustering for rapid time-domain fluorescence lifetime image analysis

被引:3
|
作者
Li, Yahui [1 ,2 ]
Sapermsap, Natakorn [3 ]
Yu, Jun [4 ]
Tian, Jinshou [1 ,2 ]
Chen, Yu [3 ]
Li, David Day-Uei [5 ]
机构
[1] Xian Inst Opt & Precis Mech, Key Lab Ultrafast Photoelect Diagnost Technol, Xian 710049, Shaanxi, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Univ Strathclyde, Scottish Univ Phys Alliance, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[4] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
[5] Univ Strathclyde, Dept Biomed Engn, Glasgow G1 0NW, Lanark, Scotland
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 中国科学院基金;
关键词
DECONVOLUTION; IMPLEMENTATION; DYNAMICS; SYSTEM;
D O I
10.1364/BOE.427532
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence lifetime imaging (FLIM) [1] is a crucial technique for assessing microenvironments of fluorophores, such as pH, Ca2+, O2, viscosity, or temperature [2-5]. Combining with Forster Resonance Energy Transfer (FRET) techniques [6], FLIM can be a powerful "quantum ruler" to measure protein conformations and interactions [7]. In contrast to fluorescence intensity imaging, FLIM is independent of fluorescence intensities and fluorophore concentrations, making FLIM a robust quantitative imaging technique for life sciences applications [8,9], medical diagnosis [10], drug developments [11,12], and flow diagnosis [13-15]. A fluorescence decay is usually modeled as a sum of exponential decay functions: We propose a histogram clustering (HC) method to accelerate fluorescence lifetime imaging (FLIM) analysis in pixel-wise and global fitting modes. The proposed method's principle was demonstrated, and the combinations of HC with traditional FLIM analysis were explained. We assessed HC methods with both simulated and experimental datasets. The results reveal that HC not only increases analysis speed (up to 106 times) but also enhances lifetime estimation accuracy. Fast lifetime analysis strategies were suggested with execution times around or below 30 mu s per histograms on MATLAB R2016a, 64-bit with the Intel Celeron CPU (2950M @ 2GHz).
引用
收藏
页码:4293 / 4307
页数:15
相关论文
共 50 条
  • [31] Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data
    Tichauer, Kenneth M.
    Migueis, Mark
    Leblond, Frederic
    Elliott, Jonathan T.
    Diop, Mamadou
    St Lawrence, Keith
    Lee, Ting-Yim
    [J]. APPLIED OPTICS, 2011, 50 (21) : 3962 - 3972
  • [32] TIME-DOMAIN HOLOGRAPHIC IMAGE STORAGE
    SHEN, XA
    CHIANG, E
    KACHRU, R
    [J]. OPTICS LETTERS, 1994, 19 (16) : 1246 - 1248
  • [33] Luminescence lifetime encoding in time-domain flow cytometry
    Kage, Daniel
    Hoffmann, Katrin
    Wittkamp, Marc
    Ameskamp, Jens
    Goehde, Wolfgang
    Resch-Genger, Ute
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [34] Luminescence lifetime encoding in time-domain flow cytometry
    Daniel Kage
    Katrin Hoffmann
    Marc Wittkamp
    Jens Ameskamp
    Wolfgang Göhde
    Ute Resch-Genger
    [J]. Scientific Reports, 8
  • [35] Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis
    Barber, P. R.
    Ameer-Beg, S. M.
    Gilbey, J.
    Carlin, L. M.
    Keppler, M.
    Ng, T. C.
    Vojnovic, B.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 : S93 - S105
  • [36] Comprehensive Investigation of Parameters Influencing Fluorescence Lifetime Imaging Microscopy in Frequency- and Time-Domain Illustrated by Phasor Plot Analysis
    Kellerer, Thomas
    Janusch, Janko
    Freymueller, Christian
    Ruehm, Adrian
    Sroka, Ronald
    Hellerer, Thomas
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [37] Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy
    Boens, Noel
    Qin, Wenwu
    Basaric, Nikola
    Hofkens, Johan
    Ameloot, Marcel
    Pouget, Jacques
    Lefevre, Jean-Pierre
    Valeur, Bernard
    Gratton, Enrico
    vandeVen, Martin
    Silva, Norberto D., Jr.
    Engelborghs, Yves
    Willaert, Katrien
    Sillen, Alain
    Rumbles, Garry
    Phillips, David
    Visser, Antonie J. W. G.
    van Hoek, Arie
    Lakowicz, Joseph R.
    Malak, Henryk
    Gryczynski, Ignacy
    Szabo, Arthur G.
    Krajcarski, Don T.
    Tamai, Naoto
    Miura, Atsushi
    [J]. ANALYTICAL CHEMISTRY, 2007, 79 (05) : 2137 - 2149
  • [38] Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Forster resonance energy transfer
    Omer, Travis
    Zhao, Lingling
    Intes, Xavier
    Hahn, Juergen
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08) : 086023
  • [39] Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
    Li, David Day-Uei
    Ameer-Beg, Simon
    Arlt, Jochen
    Tyndall, David
    Walker, Richard
    Matthews, Daniel R.
    Visitkul, Viput
    Richardson, Justin
    Henderson, Robert K.
    [J]. SENSORS, 2012, 12 (05): : 5650 - 5669
  • [40] A TIME-DOMAIN ADAPTIVE ALGORITHM FOR RAPID CONVERGENCE
    REDDI, SS
    [J]. PROCEEDINGS OF THE IEEE, 1984, 72 (04) : 533 - 535