Demazure character formula for semi-infinite flag varieties

被引:12
|
作者
Kato, Syu [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
EXTREMAL WEIGHT MODULES; QUANTUM K-THEORY; WEYL MODULES; MACDONALD POLYNOMIALS; CRYSTAL BASES; REPRESENTATIONS; ALGEBRAS;
D O I
10.1007/s00208-018-1652-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every Schubert variety of a semi-infinite flag variety is projectively normal. This gives us an interpretation of a Demazure module of a global Weyl module of a current Lie algebra as the (dual) space of global sections of a line bundle on a semi-infinite Schubert variety. Moreover, we give geometric realizations of Feigin-Makedonskyi's generalized Weyl modules, and the specialization of non-symmetric Macdonald polynomials.
引用
收藏
页码:1769 / 1801
页数:33
相关论文
共 50 条
  • [1] Demazure character formula for semi-infinite flag varieties
    Syu Kato
    [J]. Mathematische Annalen, 2018, 371 : 1769 - 1801
  • [2] SCHUBERT VARIETIES AND DEMAZURE CHARACTER FORMULA
    ANDERSEN, HH
    [J]. INVENTIONES MATHEMATICAE, 1985, 79 (03) : 611 - 618
  • [3] Frobenius splitting of Schubert varieties of semi-infinite flag manifolds
    Kato, Syu
    [J]. FORUM OF MATHEMATICS PI, 2021, 9
  • [4] SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS
    Braverman, Alexander
    Finkelberg, Michael
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) : 1147 - 1168
  • [5] ON THE DEMAZURE CHARACTER FORMULA
    JOSEPH, A
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1985, 18 (03): : 389 - 419
  • [6] A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory
    Lenart, Cristian
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [7] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [8] A twining character formula for demazure modules
    Kaneda, M
    Naito, S
    [J]. TRANSFORMATION GROUPS, 2002, 7 (04) : 321 - 341
  • [9] A Twining Character Formula For Demazure Modules
    Masaharu Kaneda
    Satoshi Naito
    [J]. Transformation Groups, 2002, 7 : 321 - 342
  • [10] Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    [J]. ADVANCES IN MATHEMATICS, 2021, 387