Convergence in mean square of factor predictors

被引:4
|
作者
Krijnen, WP [1 ]
机构
[1] Univ Amsterdam, Dept Psychol, NL-1018 WB Amsterdam, Netherlands
来源
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY | 2004年 / 57卷
关键词
D O I
10.1348/0007110042307140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient conditions for mean square convergence of factor predictors in common factor analysis are given by Guttman, by Williams, and by Schneeweiss and Mathes. These conditions do not hold for confirmatory factor analysis or when an error variance equals zero (Heywood cases). Two sufficient conditions are given for the three basic factor predictors and a predictor from rotated principal components analysis to converge to the factors of the model for confirmatory factor analysis, including Heywood cases. For certain model specifications the conditions are necessary. The conditions are sufficient for the existence of a unique true factor A geometric interpretation is given for factor indeterminacy and mean square convergence of best linear factor prediction.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 50 条
  • [31] FAST MEAN SQUARE CONVERGENCE OF CONSENSUS ALGORITHMS IN WSNs WITH RANDOM TOPOLOGIES
    Silva Pereira, Silvana
    Pages-Zamora, Alba
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2213 - 2216
  • [32] MEAN-SQUARE CONVERGENCE OF AN ADAPTIVE RLS ALGORITHM WITH STOCHASTIC EXCITATION
    BITTANTI, S
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 1946 - 1951
  • [33] On the rate of convergence for extremes of mean square differentiable stationary normal processes
    Kratz, MF
    Rootzen, H
    JOURNAL OF APPLIED PROBABILITY, 1997, 34 (04) : 908 - 923
  • [34] Quantized kernel maximum correntropy and its mean square convergence analysis
    Wang, Shiyuan
    Zheng, Yunfei
    Duan, Shukai
    Wang, Lidan
    Tan, Hongtao
    DIGITAL SIGNAL PROCESSING, 2017, 63 : 164 - 176
  • [35] MEAN-SQUARE CONVERGENCE OF A SEMIDISCRETE SCHEME FOR STOCHASTIC MAXWELL EQUATIONS
    Chen, Chuchu
    Hong, Jialin
    Ji, Lihai
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 728 - 750
  • [36] Study of the Convergence Behavior of the Complex Kernel Least Mean Square Algorithm
    Paul, Thomas K.
    Ogunfunmi, Tokunbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (09) : 1349 - 1363
  • [37] Mean square convergence unbiased estimation of thermal light correlated imaging
    Shi Z.
    Fan X.
    Cheng Z.
    Zhu B.
    Zhang H.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2016, 45 (04):
  • [39] Mean square convergence for estimators of additive regression under random censorship
    Debbarh, Mohammed
    Viallon, Vivian
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (03) : 205 - 210
  • [40] Cascaded Forward-Backward Least Mean Square Adaptive Predictors
    Yeh, Hen-Geul
    Ruiz, Carlos Rangel
    ISM: 2008 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2008, : 568 - 573