Convergence in mean square of factor predictors

被引:4
|
作者
Krijnen, WP [1 ]
机构
[1] Univ Amsterdam, Dept Psychol, NL-1018 WB Amsterdam, Netherlands
来源
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY | 2004年 / 57卷
关键词
D O I
10.1348/0007110042307140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient conditions for mean square convergence of factor predictors in common factor analysis are given by Guttman, by Williams, and by Schneeweiss and Mathes. These conditions do not hold for confirmatory factor analysis or when an error variance equals zero (Heywood cases). Two sufficient conditions are given for the three basic factor predictors and a predictor from rotated principal components analysis to converge to the factors of the model for confirmatory factor analysis, including Heywood cases. For certain model specifications the conditions are necessary. The conditions are sufficient for the existence of a unique true factor A geometric interpretation is given for factor indeterminacy and mean square convergence of best linear factor prediction.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 50 条
  • [21] Mean Square Convergence of the Numerical Solution of Random Differential Equations
    Nouri, Kazem
    Ranjbar, Hasan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 1123 - 1140
  • [22] Mean Square Convergence of the Numerical Solution of Random Differential Equations
    Kazem Nouri
    Hasan Ranjbar
    Mediterranean Journal of Mathematics, 2015, 12 : 1123 - 1140
  • [23] Mean square convergence of a semidiscrete scheme for SPDEs of Zakai type driven by square integrable martingales
    Lang, Annika
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1609 - 1617
  • [24] On the convergence rate performance of the normalized least-mean-square adaptation
    An, PE
    Brown, M
    Harris, CJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05): : 1211 - 1214
  • [25] Mean square convergence of nonparametric identification algorithm of ARX-process
    Koshkin, Gennady M.
    Glukhova, Irina Yu
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2012, 21 (04): : 71 - 78
  • [26] On Convergence of Proportionate-Type Normalized Least Mean Square Algorithms
    Das, Rajib Lochan
    Chakraborty, Mrityunjoy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (05) : 491 - 495
  • [27] Stochastic approximation for consensus seeking: Mean square and almost sure convergence
    Huang, Minyi
    Manton, Jonathan H.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3806 - +
  • [28] Mean square convergence of multi-innovation forgetting gradient identification
    Ding, F
    Ding, T
    2001 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS I AND II, CONFERENCE PROCEEDINGS, 2001, : 437 - 440
  • [29] MEAN-SQUARE CONVERGENCE OF NON-HARMONIC TRIGONOMETRICAL SERIES
    COSSAR, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1976, 75 : 297 - 323
  • [30] On the rate of convergence for extremes of mean square differentiable stationary normal processes
    Universite Rene Descartes, Paris, France
    J Appl Probab, 4 (908-923):