A RADIOMICS APPROACH TO TRAUMATIC BRAIN INJURY PREDICTION IN CT SCANS

被引:0
|
作者
de la Rosa, Ezequiel [1 ,2 ]
Sima, Diana M. [1 ]
Vande Vyvere, Thijs [1 ]
Kirschke, Jan S. [2 ]
Menze, Bjoern [2 ]
机构
[1] Icometrix, Leuven, Belgium
[2] Tech Univ Munich, Dept Comp Sci, Munich, Germany
基金
欧盟地平线“2020”;
关键词
Traumatic Brain Injury; CT; Radiomics;
D O I
10.1109/isbi.2019.8759229
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer Tomography (CT) is the gold standard technique for brain damage evaluation after acute Traumatic Brain Injury (TM). It allows identification of most lesion types and determines the need of surgical or alternative therapeutic procedures. However, the traditional approach for lesion classification is restricted to visual image inspection. In this work, we characterize and predict lesions by using CT derived radiornics descriptors. Relevant shape, intensity and texture biomarkers characterizing the different lesions are isolated and a lesion predictive model is built by using Partial Least Squares. On a dataset containing 155 scans (105 train, 50 test) the methodology achieved 89.7% accuracy over the unseen data. When a model was built using only texture features, a 88.2% accuracy was obtained. Our results suggest that selected radiomics descriptors could play a key role in brain injury prediction. Besides, the proposed methodology is close to reproduce radiologists lesion labelling. These results open new possibilities for radiomics-inspired brain lesion detection, segmentation and prediction.
引用
收藏
页码:732 / 735
页数:4
相关论文
共 50 条
  • [21] A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury
    Peng, Chi
    Yang, Fan
    Li, Lulu
    Peng, Liwei
    Yu, Jian
    Wang, Peng
    Jin, Zhichao
    NEUROCRITICAL CARE, 2023, 38 (02) : 335 - 344
  • [22] A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury
    Chi Peng
    Fan Yang
    Lulu Li
    Liwei Peng
    Jian Yu
    Peng Wang
    Zhichao Jin
    Neurocritical Care, 2023, 38 : 335 - 344
  • [23] Selection of CT variables and prognostic models for outcome prediction in patients with traumatic brain injury
    Djino Khaki
    Virpi Hietanen
    Alba Corell
    Helena Odenstedt Hergès
    Johan Ljungqvist
    Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 29
  • [24] Selection of CT variables and prognostic models for outcome prediction in patients with traumatic brain injury
    Khaki, Djino
    Hietanen, Virpi
    Corell, Alba
    Herges, Helena Odenstedt
    Ljungqvist, Johan
    SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2021, 29 (01):
  • [25] CT Overuse for Mild Traumatic Brain Injury
    Melnick, Edward R.
    Szlezak, Christopher M.
    Bentley, Suzanne K.
    Dziura, James D.
    Kotlyar, Simon
    Post, Lori A.
    JOINT COMMISSION JOURNAL ON QUALITY AND PATIENT SAFETY, 2012, 38 (11): : 483 - 489
  • [26] Traumatic brain injury and postoperative CT Response
    Fontes, Ricardo B. V.
    Smith, Adam P.
    Munoz, Lorenzo F.
    Byrne, Richard W.
    Traynelis, Vincent C.
    JOURNAL OF NEUROSURGERY, 2014, 121 (02) : 306 - 306
  • [27] Traumatic Brain Injury: Integrated Approach
    Oliveira, Edson
    Lavrador, Jose Pedro
    Santos, Maria Manuel
    Antunes, Joao Lobo
    ACTA MEDICA PORTUGUESA, 2012, 25 (03): : 179 - 192
  • [28] Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes
    Nijiati, Mayidili
    Guo, Lin
    Abulizi, Abudoukeyoumujiang
    Fan, Shiyu
    Wubuli, Abulikemu
    Tuersun, Abudouresuli
    Nijiati, Pahatijiang
    Xia, Li
    Hong, Kunlei
    Zou, Xiaoguang
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 169
  • [29] CT Image Segmentation in Traumatic Brain Injury
    Soroushmehr, S. M. R.
    Bafna, A.
    Schlosser, S.
    Ward, K.
    Derksen, H.
    Najarian, K.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2973 - 2976
  • [30] A BIOMARKER PANEL TO RULE-OUT UNNECESSARY CT-SCANS IN MILD TRAUMATIC BRAIN INJURY (MTBI)
    Lagerstedt, L.
    Tiberti, N.
    Turck, N.
    Andereggen, E.
    Bulla, A.
    Rinaldi, L.
    Sarrafzadeh-Khorassani, A.
    Schaller, K.
    Sanchez, J. C.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 : 782 - 783