Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes

被引:5
|
作者
Nijiati, Mayidili [1 ]
Guo, Lin [2 ]
Abulizi, Abudoukeyoumujiang [1 ]
Fan, Shiyu [1 ]
Wubuli, Abulikemu [3 ]
Tuersun, Abudouresuli [1 ]
Nijiati, Pahatijiang [1 ]
Xia, Li [2 ]
Hong, Kunlei [2 ]
Zou, Xiaoguang [4 ,5 ]
机构
[1] First Peoples Hosp Kashi Kashgar Prefecture, Dept Radiol, Kashgar, Peoples R China
[2] Shenzhen Zhiying Med Imaging, Shenzhen, Guangdong, Peoples R China
[3] Yecheng Cty Peoples Hosp, Dept Radiol, Yancheng, Peoples R China
[4] First Peoples Hosp Kashi Kashgar Prefecture, Clin Med Res Ctr, Xinjiang, Peoples R China
[5] First Peoples Hosp Kashi Kashgar Prefecture, 120 Yingbin Ave, Kashi, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal CT scans; Radiomics; Deep learning; Treatment outcome prediction; Drug -resistant tuberculosis; LUNG-CANCER; DIAGNOSIS;
D O I
10.1016/j.ejrad.2023.111180
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes of drug -resistant tuberculosis (DR-TB) and interrupt transmission.Methods: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep -learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans).Results: For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort.Conclusions: Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients
    Nijiati, Mayidili
    Guo, Lin
    Tuersun, Abudouresuli
    Damola, Maihemitijiang
    Abulizi, Abudoukeyoumujiang
    Dong, Jiake
    Xia, Li
    Hong, Kunlei
    Zou, Xiaoguang
    ISCIENCE, 2023, 26 (11)
  • [2] Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
    Ter Maat, Laurens S.
    De Mooij, Rob A. J.
    Van Duin, Isabella A. J.
    Verhoeff, Joost J. C.
    Elias, Sjoerd G.
    Leiner, Tim
    van Amsterdam, Wouter A. C.
    Troenokarso, Max F.
    Arntz, Eran R. A. N.
    van den Berkmortel, Franchette W. P. J.
    Boers-Sonderen, Marye J.
    Boomsma, Martijn F.
    van den Eertwegh, Fons J. M.
    de Groot, Jan Willem
    Hospers, Geke A. P.
    Piersma, Djura
    Vreugdenhil, Art
    Westgeest, Hans M.
    Kapiteijn, Ellen
    De Wit, Ardine A.
    Blokx, Willeke A. M.
    Van Diest, Paul J.
    De Jong, Pim A.
    Pluim, Josien P. W.
    Suijkerbuijk, Karijn P. M.
    Veta, Mitko
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Deep learning and radiomics of PET/CT images for head and neck cancer treatment outcome prediction
    Huynh, B. N.
    Groendahl, A. R.
    Langberg, S. E. R.
    Tomic, O.
    Malinen, E.
    Dale, E.
    Futsaether, C. M.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S134 - S135
  • [4] Deep learning for oncologic treatment outcomes and endpoints evaluation from CT scans in liver cancer
    Xia, Yujia
    Zhou, Jie
    Xun, Xiaolei
    Johnston, Luke
    Wei, Ting
    Gao, Ruitian
    Zhang, Yufei
    Reddy, Bobby
    Liu, Chao
    Kim, Geoffrey
    Zhang, Jin
    Zhao, Shuai
    Yu, Zhangsheng
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [5] A RADIOMICS APPROACH TO TRAUMATIC BRAIN INJURY PREDICTION IN CT SCANS
    de la Rosa, Ezequiel
    Sima, Diana M.
    Vande Vyvere, Thijs
    Kirschke, Jan S.
    Menze, Bjoern
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 732 - 735
  • [6] Automated Analysis of Split Kidney Function from CT Scans Using Deep Learning and Delta Radiomics
    Correa-Medero, Ramon Luis
    Jeong, Jiwoong
    Patel, Bhavik
    Banerjee, Imon
    Abdul-Muhsin, Haidar
    JOURNAL OF ENDOUROLOGY, 2024, 38 (08) : 817 - 823
  • [7] Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data
    Cho, Se Jin
    Cho, Wonwoo
    Choi, Dongmin
    Sim, Gyuhyeon
    Jeong, So Yeong
    Baik, Sung Hyun
    Bae, Yun Jung
    Choi, Byung Se
    Kim, Jae Hyoung
    Yoo, Sooyoung
    Han, Jung Ho
    Kim, Chae-Yong
    Choo, Jaegul
    Sunwoo, Leonard
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Clinic, CT radiomics, and deep learning combined model for the prediction of invasive pulmonary aspergillosis
    Zhang, Kaixiang
    Zhao, Guoxin
    Liu, Yinghui
    Huang, Yongbin
    Long, Jie
    Li, Ning
    Yan, Huangze
    Zhang, Xiuzhu
    Ma, Jingzhi
    Zhang, Yuming
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [9] Prediction of carbonate permeability from multi-resolution CT scans and deep learning
    Zhang, Lin
    Chen, Guang-dong
    Ba, Jing
    Carcione, Jose M.
    Xu, Wen-hao
    Fang, Zhi-jian
    APPLIED GEOPHYSICS, 2024, : 805 - 819
  • [10] Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcinomas in ground glass opacity lesions on CT scans
    Wang, Xing
    Zhang, Li
    Yang, Xin
    Tang, Lei
    Zhao, Jie
    Chen, Gaoxiang
    Li, Xiang
    Yan, Shi
    Li, Shaolei
    Yang, Yue
    Kang, Yue
    Li, Quanzheng
    Wu, Nan
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 129