Deep learning and radiomics of PET/CT images for head and neck cancer treatment outcome prediction

被引:0
|
作者
Huynh, B. N. [1 ]
Groendahl, A. R. [1 ]
Langberg, S. E. R. [2 ]
Tomic, O. [1 ]
Malinen, E. [3 ,4 ]
Dale, E. [5 ]
Futsaether, C. M. [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Sci & Technol, As, Norway
[2] Canc Registry Norway, Dept Registry Informat, Oslo, Norway
[3] Oslo Univ Hosp, Dept Med Phys, Oslo, Norway
[4] Univ Oslo, Dept Phys, Oslo, Norway
[5] Oslo Univ Hosp, Dept Oncol, Oslo, Norway
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PD-0159
引用
收藏
页码:S134 / S135
页数:2
相关论文
共 50 条
  • [1] Prediction of treatment outcome for head and neck cancers using radiomics of PET/CT images
    Groendahl, A. Rosvoll
    Midtfjord, A. D.
    Langberg, G. S. Elvatun Rakh
    Tomic, O.
    Indahl, U. G.
    Knudtsen, I. Skjei
    Malinen, E.
    Dale, E.
    Futsaether, C. M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S526 - S526
  • [2] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    [J]. FRONTIERS IN MEDICINE, 2023, 10
  • [3] Deep learning in head & neck cancer outcome prediction
    André Diamant
    Avishek Chatterjee
    Martin Vallières
    George Shenouda
    Jan Seuntjens
    [J]. Scientific Reports, 9
  • [4] Deep learning in head & neck cancer outcome prediction
    Diamant, Andre
    Chatterjee, Avishek
    Vallieres, Martin
    Shenouda, George
    Seuntjens, Jan
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics( vol 10 , 1217037 , 2023)
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    [J]. FRONTIERS IN MEDICINE, 2024, 11
  • [6] Complementary Value of Intra- and Peri-Tumoral PET/CT Radiomics for Outcome Prediction in Head and Neck Cancer
    Lv, Wenbing
    Feng, Hui
    Du, Dongyang
    Ma, Jianhua
    Lu, Lijun
    [J]. IEEE ACCESS, 2021, 9 : 81818 - 81827
  • [7] Prediction of treatment outcome in head and neck cancer with FDG PET.
    Ohlsson, T
    Brun, E
    Sandell, A
    Kjellen, E
    Tennvall, J
    Wennerberg, J
    Strand, SE
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2000, 41 (05) : 273P - 273P
  • [8] Progressive Generative Adversarial Networks: Deep Learning in Head and Neck Cancer CT Images to Synthesized PET Images Generation for Hybrid PET/CT Application
    Huang, Bin
    Chen, Zhe-wei
    Law, Martin
    Feng, Shi-ting
    Li, Qiao-liang
    Huang, Bing-sheng
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND NETWORK TECHNOLOGY (CCNT 2018), 2018, 291 : 214 - 217
  • [9] FDG-PET/CT Radiomics Models for The Early Prediction of Locoregional Recurrence in Head and Neck Cancer
    Hu Cong
    Wang Peng
    Zhou Tian
    Vallieres, Martin
    Xu Chuanpei
    Zhu Aijun
    Zhang Benxin
    [J]. CURRENT MEDICAL IMAGING, 2021, 17 (03) : 374 - 383
  • [10] Deep learning post-radiotherapy recurrence prediction in head and neck cancer from planning PET/CT
    Kutnar, D.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1881 - S1882