A RADIOMICS APPROACH TO TRAUMATIC BRAIN INJURY PREDICTION IN CT SCANS

被引:0
|
作者
de la Rosa, Ezequiel [1 ,2 ]
Sima, Diana M. [1 ]
Vande Vyvere, Thijs [1 ]
Kirschke, Jan S. [2 ]
Menze, Bjoern [2 ]
机构
[1] Icometrix, Leuven, Belgium
[2] Tech Univ Munich, Dept Comp Sci, Munich, Germany
基金
欧盟地平线“2020”;
关键词
Traumatic Brain Injury; CT; Radiomics;
D O I
10.1109/isbi.2019.8759229
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer Tomography (CT) is the gold standard technique for brain damage evaluation after acute Traumatic Brain Injury (TM). It allows identification of most lesion types and determines the need of surgical or alternative therapeutic procedures. However, the traditional approach for lesion classification is restricted to visual image inspection. In this work, we characterize and predict lesions by using CT derived radiornics descriptors. Relevant shape, intensity and texture biomarkers characterizing the different lesions are isolated and a lesion predictive model is built by using Partial Least Squares. On a dataset containing 155 scans (105 train, 50 test) the methodology achieved 89.7% accuracy over the unseen data. When a model was built using only texture features, a 88.2% accuracy was obtained. Our results suggest that selected radiomics descriptors could play a key role in brain injury prediction. Besides, the proposed methodology is close to reproduce radiologists lesion labelling. These results open new possibilities for radiomics-inspired brain lesion detection, segmentation and prediction.
引用
收藏
页码:732 / 735
页数:4
相关论文
共 50 条
  • [1] A COMBINED CLINICAL AND MRI APPROACH FOR OUTCOME PREDICTION IN MILD TRAUMATIC BRAIN INJURY PATIENTS WITH NEGATIVE CT SCANS
    Jin, Yong
    Bai, Zhi-Qiang
    JOURNAL OF NEUROTRAUMA, 2011, 28 (05) : A21 - A22
  • [2] Role of repeat CT scans in the management of traumatic brain injury
    Doddamani, Ramesh S.
    Gupta, Sunil K.
    Singla, Navneet
    Mohindra, Sandeep
    Singh, Paramjeet
    INDIAN JOURNAL OF NEUROTRAUMA, 2012, 9 (01): : 33 - 39
  • [3] Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans
    Pease, Matthew
    Arefan, Dooman
    Barber, Jason
    Yuh, Esther
    Puccio, Ava
    Hochberger, Kerri
    Nwachuku, Enyinna
    Roy, Souvik
    Casillo, Stephanie
    Temkin, Nancy
    Okonkwo, David O.
    Wu, Shandong
    RADIOLOGY, 2022, 304 (02) : 385 - 394
  • [4] Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions on CT-scans
    Clément Brossard
    Jules Grèze
    Jules-Arnaud de Busschère
    Arnaud Attyé
    Marion Richard
    Florian Dhaussy Tornior
    Clément Acquitter
    Jean-François Payen
    Emmanuel L. Barbier
    Pierre Bouzat
    Benjamin Lemasson
    Scientific Reports, 13
  • [5] Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions on CT-scans
    Brossard, Clement
    Greze, Jules
    de Busschere, Jules-Arnaud
    Attye, Arnaud
    Richard, Marion
    Tornior, Florian Dhaussy
    Acquitter, Clement
    Payen, Jean-Francois
    Barbier, Emmanuel L.
    Bouzat, Pierre
    Lemasson, Benjamin
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Automated identification and quantification of traumatic brain injury from CT scans: Are we there yet?
    Hibi, Atsuhiro
    Jaberipour, Majid
    Cusimano, Michael D.
    Bilbily, Alexander
    Krishnan, Rahul G.
    Aviv, Richard I.
    Tyrrell, Pascal N.
    MEDICINE, 2022, 101 (47) : E31848
  • [7] AUTOMATED IDENTIFICATION AND QUANTIFICATION OF TRAUMATIC BRAIN INJURY FROM CT SCANS: ARE WE THERE YET?
    Hibi, Atsuhiro
    Jaberipour, Majid
    Cusimano, Michael D.
    Bilbily, Alexander
    Krishnan, Rahul G.
    Aviv, Richard I.
    Tyrrell, Pascal N.
    MEDICINE, 2023, 102 (08) : 1 - 1
  • [8] Deep Learning for Brain Segmentation on CT Scans with Penetrating and Non-Penetrating Traumatic Brain Injury
    Toledo-Urena, J.
    Fuhrman, J. D.
    Mansour, A.
    Pasternak-Wise, O.
    Goldenberg, F.
    Powla, P.
    Giger, M. L.
    MEDICAL PHYSICS, 2024, 51 (10) : 7750 - 7751
  • [9] CT Characteristics, Risk Stratification, and Prediction Models in Traumatic Brain Injury
    Tasker, Robert C.
    PEDIATRIC CRITICAL CARE MEDICINE, 2014, 15 (06) : 569 - 570
  • [10] Quantitative CT Improves Outcome Prediction in Acute Traumatic Brain Injury
    Yuh, Esther L.
    Cooper, Shelly R.
    Ferguson, Adam R.
    Manley, Geoffrey T.
    JOURNAL OF NEUROTRAUMA, 2012, 29 (05) : 735 - 746