Cutting resilient networks - complete binary trees

被引:0
|
作者
Cai, Xing Shi [1 ]
Holmgren, Cecilia [1 ]
机构
[1] Uppsala Univ, Dept Math, Uppsala, Sweden
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 04期
基金
瑞典研究理事会;
关键词
complete binary tree; infinitely divisible distributions; stable distributions; cuttings of trees; RANDOM RECORDS; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous work [2, 3], we introduced the random k-cut number for rooted graphs. In this paper, we show that the distribution of the k-cut number in complete binary trees of size n, after rescaling, is asymptotically a periodic function of lg n - lg lg n. Thus there are different limit distributions for different subsequences, where these limits are similar to weakly 1-stable distributions. This generalizes the result for the case k = 1, i.e., the traditional cutting model, by Janson [12].
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Complete binary trees embeddings in Mobius cubes
    Liu, Zhao
    Fan, Jianxi
    Jia, Xiaohua
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (02) : 260 - 281
  • [22] Complete binary trees in folded and enhanced cubes
    Choudum, SA
    Nandini, RU
    NETWORKS, 2004, 43 (04) : 266 - 272
  • [23] Embedding complete binary trees in product graphs
    Kemal Efe
    Adrienne L. Broadwater
    Antonio Fernandez
    Telecommunication Systems, 2000, 13 : 99 - 109
  • [24] Optimal leaf ordering of complete binary trees
    Brandes, Ulrik
    JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (03) : 546 - 552
  • [25] OPTIMAL PARALLEL EXECUTION OF COMPLETE BINARY-TREES AND GRIDS INTO MOST POPULAR INTERCONNECTION NETWORKS
    BAMPIS, E
    KONIG, JC
    TRYSTRAM, D
    THEORETICAL COMPUTER SCIENCE, 1995, 147 (1-2) : 1 - 18
  • [26] Embedding Hierarchical Cubic Networks into k-Rooted Complete Binary Trees for Minimum Wirelength
    Guo, Ruyan
    Wang, Yan
    Fan, Jianxi
    Fan, Weibei
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (03) : 327 - 352
  • [27] An optimal emulator and VLSI layout for complete binary trees
    Efe, K.
    Eleser, N.
    Acta Informatica, 34 (06):
  • [28] Optimal embedding of complete binary trees into lines and grids
    Heckmann, R
    Klasing, R
    Monien, B
    Unger, W
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1998, 49 (01) : 40 - 56
  • [29] Embedding complete binary trees into star and pancake graphs
    Bouabdallah, A.
    Heydemann, M.C.
    Opatrny, J.
    Sotteau, D.
    Theory of Computing Systems, 31 (03): : 279 - 305
  • [30] Optimal embedding of large complete binary trees into hypercubes
    Chen, C.C.
    Chen, R.J.
    Journal of Information Science and Engineering, 1996, 12 (02):