Cutting resilient networks - complete binary trees

被引:0
|
作者
Cai, Xing Shi [1 ]
Holmgren, Cecilia [1 ]
机构
[1] Uppsala Univ, Dept Math, Uppsala, Sweden
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 04期
基金
瑞典研究理事会;
关键词
complete binary tree; infinitely divisible distributions; stable distributions; cuttings of trees; RANDOM RECORDS; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous work [2, 3], we introduced the random k-cut number for rooted graphs. In this paper, we show that the distribution of the k-cut number in complete binary trees of size n, after rescaling, is asymptotically a periodic function of lg n - lg lg n. Thus there are different limit distributions for different subsequences, where these limits are similar to weakly 1-stable distributions. This generalizes the result for the case k = 1, i.e., the traditional cutting model, by Janson [12].
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Resilient Multipoint Networks Based on Redundant Trees
    Bejerano, Yigal
    Busi, Italo
    Ciavaglia, Laurent
    Hernandez-Valencia, Enrique
    Koppol, Pramod
    Sestito, Vincenzo
    Vigoureux, Martin
    BELL LABS TECHNICAL JOURNAL, 2009, 14 (02) : 113 - 130
  • [12] On the fault-tolerant embeddings of complete binary trees in mesh interconnection networks.
    Fang, WC
    Hsu, CC
    Wang, CM
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 511 - 515
  • [13] Embedding complete binary trees in product graphs
    Broadwater, A
    Efe, K
    Fernandez, A
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1997, 1197 : 56 - 66
  • [14] Embedding complete binary trees into parity cubes
    Zhao Liu
    Jianxi Fan
    Xiaohua Jia
    The Journal of Supercomputing, 2015, 71 : 1 - 27
  • [15] Embedding complete binary trees in product graphs
    Efe, K
    Broadwater, AL
    Fernandez, A
    TELECOMMUNICATION SYSTEMS, 2000, 13 (01) : 99 - 109
  • [16] Expansion of layouts of complete binary trees into grids
    Lin, YB
    Miller, Z
    Perkel, M
    Pritikin, D
    Sudborough, IH
    DISCRETE APPLIED MATHEMATICS, 2003, 131 (03) : 611 - 642
  • [17] STRUCTURAL FUNCTIONS OF COMPLETE BINARY-TREES
    KLIMOV, AN
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1988, 26 (04): : 31 - 34
  • [18] EMBEDDING COMPLETE BINARY-TREES INTO HYPERCUBES
    LEISS, EL
    REDDY, HN
    INFORMATION PROCESSING LETTERS, 1991, 38 (04) : 197 - 199
  • [19] Embedding complete binary trees into parity cubes
    Liu, Zhao
    Fan, Jianxi
    Jia, Xiaohua
    JOURNAL OF SUPERCOMPUTING, 2015, 71 (01): : 1 - 27
  • [20] Random records and cuttings in complete binary trees
    Janson, S
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 241 - 253