Iterated sumsets and Hilbert functions

被引:0
|
作者
Eliahou, Shalom [1 ,2 ]
Mazumdar, Eshita [3 ]
机构
[1] Univ Littoral Cote dOpale, UR 2597, LMPA Lab Math Pures & Appl Joseph Lionville, F-62100 Calais, France
[2] CNRS, FR2037, Paris, France
[3] Ahmedabad Univ, Sch Arts & Sci, Cent Campus, Ahmadabad 380009, Gujarat, India
关键词
Plunnecke's inequality; Standard graded algebra; Macaulay's theorem; Binomial representation;
D O I
10.1016/j.jalgebra.2021.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite subset of an abelian group (G, +). For h is an element of N, let hA = A + ... + A denote the h-fold iterated sumset of A. If vertical bar A vertical bar >= 2, understanding the behavior of the sequence of cardinalities |hA| is a fundamental problem in additive combinatorics. For instance, if vertical bar hA vertical bar is known, what can one say about vertical bar(h - 1)A vertical bar and vertical bar(h + 1)A vertical bar? The current classical answer is given by vertical bar(h- 1)A vertical bar >= vertical bar hA vertical bar((h-1)/h), a consequence of Plunnecke's inequality based on graph theory. We tackle here this problem with a completely new approach, namely by invoking Macaulay's classical 1927 theorem on the growth of Hilbert functions of standard graded algebras. With it, we first obtain demonstrably strong bounds on |hA| as h grows. Then, using a recent condensed version of Macaulay's theorem, we derive the above Plunnecke-based estimate and significantly improve it in the form vertical bar(h- 1)A vertical bar >= theta(x, h) vertical bar hA vertical bar((h-1)/h) for h >= 2 and some explicit factor theta(x, h) > 1, where x is an element of R satisfies x >= h and vertical bar hA vertical bar = (x/h). Equivalently and more simply,vertical bar(h- 1)A vertical bar >= h/x vertical bar hA vertical bar.We show that theta(x, h) often exceeds 1.5 and even 2, and asymptotically tends to e 2.718 as x grows and h lies in a suitable range depending on x. (C)2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 294
页数:21
相关论文
共 50 条
  • [41] Iterated Approximate Value Functions
    O'Donoghue, Brendan
    Wang, Yang
    Boyd, Stephen
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3882 - 3888
  • [42] OPTIMALLY SMALL SUMSETS IN GROUPS III. THE GENERALIZED INCREASINGLY SMALL SUMSETS PROPERTY AND THE v(g)((k)) FUNCTIONS
    Plagne, Alain
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2007, 37 (02) : 377 - 397
  • [43] Dynamics and Julia sets of iterated elliptic functions Dynamics and Julia sets of iterated elliptic functions
    Hawkins, Jane
    Rocha, Monica Moreno
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 947 - 979
  • [44] SOME REMARKS ON SUMSETS AND RESTRICTED SUMSETS
    Tang, Min
    Wang, Wenhui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 667 - 673
  • [45] Upper bounds of Hilbert coefficients and Hilbert functions
    Elias, Juan
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 87 - 94
  • [46] Cones of Hilbert Functions
    Boij, Mats
    Smith, Gregory G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10314 - 10338
  • [47] Maximal Hilbert Functions
    Rossi M.E.
    Valla G.
    Vasconcelos W.V.
    Results in Mathematics, 2001, 39 (1-2) : 99 - 114
  • [48] Bipolynomial Hilbert functions
    Carlini, Enrico
    Catalisano, Maria Virginia
    Geramita, Anthony V.
    JOURNAL OF ALGEBRA, 2010, 324 (04) : 758 - 781
  • [49] GENERALIZED HILBERT FUNCTIONS
    Polini, Claudia
    Xie, Yu
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2411 - 2427
  • [50] On the monotonicity of Hilbert functions
    Puthenpurakal, Tony J.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2019, 141 : 1 - 8