On the monotonicity of Hilbert functions

被引:3
|
作者
Puthenpurakal, Tony J. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Hilbert functions; blow-up algebras; LOCAL-RINGS;
D O I
10.4171/RSMUP/11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that a large class of one-dimensional Cohen-Macaulay local rings (A, m) has the property that if M is a maximal Cohen-Macaulay A-module then the Hilbert function of M (with respect to m) is non-decreasing. Examples include (1) complete intersections A = Q/(f, g) where (Q, n) is regular local of dimension three and f is an element of n(2) \ n(3); (2) one dimensional Cohen-Macaulay quotients of a two dimensional Cohen-Macaulay local ring with pseudo-rational singularity.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Hyperbolic monotonicity in the Hilbert ball
    Kopecka, Eva
    Reich, Simeon
    FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
  • [2] Hyperbolic monotonicity in the Hilbert ball
    Eva Kopecká
    Simeon Reich
    Fixed Point Theory and Applications, 2006
  • [3] On the monotonicity of the Hilbert functions for 4-generated pseudo-symmetric monomial curves
    Sahin, Nil
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4871 - 4895
  • [4] On the monotonicity of the Hilbert function of the Sally module
    Doering, LR
    Pinto, MV
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) : 1861 - 1866
  • [5] Mixture functions and their monotonicity
    Spirkova, Jana
    Beliakov, Gleb
    Bustince, Humberto
    Fernandez, Javier
    INFORMATION SCIENCES, 2019, 481 : 520 - 549
  • [6] Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
    Mao, Zhong-Xuan
    Tian, Jing-Feng
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 217 - 235
  • [7] Strong monotonicity of operator functions
    Mitsuru Uchiyama
    Integral Equations and Operator Theory, 2000, 37 : 95 - 105
  • [8] Bessel functions: Monotonicity and bounds
    Landau, LJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 197 - 215
  • [9] Measuring the lack of monotonicity in functions
    Qoyyimi, Danang Teguh
    Zitikis, Ričardas
    Mathematical Scientist, 2014, 39 (02): : 107 - 117
  • [10] Fusion Functions and Directional Monotonicity
    Bustince, Humberto
    Fernandez, Javier
    Kolesarova, Anna
    Mesiar, Radko
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, PT III, 2014, 444 : 262 - 268