A multigrid method for distributed parameter estimation problems

被引:0
|
作者
Ascher, UM [1 ]
Haber, E
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
distributed parameter estimation; inverse problem; multigrid method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers problems of distributed parameter estimation from data measurements on solutions of partial differential equations (PDEs). A nonlinear least squares functional is minimized to approximately recover the sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a finite volume or finite element discretization of the forward differential equation, and a Tikhonov-type regularization term, involving the discretization of a mix of model derivatives. We develop a multigrid method for the resulting constrained optimization problem. The method directly addresses the discretized PDE system which defines a critical point of the Lagrangian. The discretization is cell-based. This system is strongly coupled when the regularization parameter is small. Moreover, the compactness of the discretization scheme does not necessarily follow from compact discretizations of the forward model and of the regularization term. We therefore employ a Marquardt-type modification on coarser grids. Alternatively, fewer grids are used and a preconditioned Krylov-space method is utilized on the coarsest grid. A collective point relaxation method (weighted Jacobi or a Gauss-Seidel variant) is used for smoothing. We demonstrate the efficiency of our method on a classical model problem from hydrology.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] A multigrid method for the pseudostress formulation of Stokes problems
    Cai, Zhiqiang
    Wang, Yanqiu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05): : 2078 - 2095
  • [42] A multigrid–homotopy method for nonlinear inverse problems
    Liu, Tao
    Computers and Mathematics with Applications, 2021, 79 (06): : 1706 - 1717
  • [43] Parallel multigrid method for solving inverse problems
    Al-Mahdawi, H. K.
    Sidikova, A., I
    Alkattan, Hussein
    Abotaleb, Mostafa
    Kadi, Ammar
    El-kenawy, El-Sayed M.
    METHODSX, 2022, 9
  • [44] A Multigrid Method for Helmholtz Transmission Eigenvalue Problems
    Ji, Xia
    Sun, Jiguang
    Xie, Hehu
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 276 - 294
  • [45] An efficient multigrid method for semilinear interface problems
    Xu, Fei
    Guo, Yasai
    Huang, Qiumei
    Ma, Hongkun
    APPLIED NUMERICAL MATHEMATICS, 2022, 179 : 238 - 254
  • [46] A Multigrid Method for Helmholtz Transmission Eigenvalue Problems
    Xia Ji
    Jiguang Sun
    Hehu Xie
    Journal of Scientific Computing, 2014, 60 : 276 - 294
  • [47] A full multigrid method for nonlinear eigenvalue problems
    Jia, ShangHui
    Xie, HeHu
    Xie, ManTing
    Xu, Fei
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 2037 - 2048
  • [48] A multigrid method for constrained optimal control problems
    Engel, M.
    Griebel, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4368 - 4388
  • [49] A full multigrid method for nonlinear eigenvalue problems
    ShangHui Jia
    HeHu Xie
    ManTing Xie
    Fei Xu
    Science China Mathematics, 2016, 59 : 2037 - 2048
  • [50] ANALYSIS OF THE CONVERGENCE OF THE MULTIGRID METHOD FOR RIGID PROBLEMS
    KUCHERENKO, VV
    MATHEMATICAL NOTES, 1990, 48 (1-2) : 754 - 760