A multigrid method for distributed parameter estimation problems

被引:0
|
作者
Ascher, UM [1 ]
Haber, E
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
distributed parameter estimation; inverse problem; multigrid method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers problems of distributed parameter estimation from data measurements on solutions of partial differential equations (PDEs). A nonlinear least squares functional is minimized to approximately recover the sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a finite volume or finite element discretization of the forward differential equation, and a Tikhonov-type regularization term, involving the discretization of a mix of model derivatives. We develop a multigrid method for the resulting constrained optimization problem. The method directly addresses the discretized PDE system which defines a critical point of the Lagrangian. The discretization is cell-based. This system is strongly coupled when the regularization parameter is small. Moreover, the compactness of the discretization scheme does not necessarily follow from compact discretizations of the forward model and of the regularization term. We therefore employ a Marquardt-type modification on coarser grids. Alternatively, fewer grids are used and a preconditioned Krylov-space method is utilized on the coarsest grid. A collective point relaxation method (weighted Jacobi or a Gauss-Seidel variant) is used for smoothing. We demonstrate the efficiency of our method on a classical model problem from hydrology.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] Parameter estimation method of incoherently distributed source via sparse representation
    Cheng, Zeng-Fei
    Zhao, Yong-Bo
    Shui, Peng-Lang
    Xu, Bao-Qing
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (12): : 2885 - 2890
  • [32] Distributed Coherent Radar LFM Wideband Stretch Parameter Estimation Method
    Zhou Baoliang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (07) : 1566 - 1572
  • [33] A multiscale method for distributed parameter estimation with application to reservoir history matching
    Aanonsen, Sigurd Ivar
    Eydinov, Dmitry
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 97 - 117
  • [34] A MULTIGRID METHOD FOR A PARAMETER DEPENDENT PROBLEM IN SOLID MECHANICS
    BRAESS, D
    BLOMER, C
    NUMERISCHE MATHEMATIK, 1990, 57 (08) : 747 - 761
  • [35] Adaptive multigrid method for quantum eigenvalue problems
    Xu, Fei
    Wang, Bingyi
    Luo, Fusheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [36] MULTIGRID METHOD FOR SOLVING OBSTACLE-PROBLEMS
    HOPPE, RHW
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (06): : 711 - 735
  • [37] A MULTIGRID CONTINUATION METHOD FOR ELLIPTIC PROBLEMS WITH FOLDS
    BOLSTAD, JH
    KELLER, HB
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1081 - 1104
  • [38] A full multigrid method for nonlinear eigenvalue problems
    JIA ShangHui
    XIE HeHu
    XIE ManTing
    XU Fei
    ScienceChina(Mathematics), 2016, 59 (10) : 2037 - 2048
  • [39] NONCONFORMING MULTIGRID METHOD FOR NONSYMMETRIC AND INDEFINITE PROBLEMS
    YON, YJ
    KWAK, DY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (11) : 1 - 7
  • [40] A MULTIGRID METHOD FOR THE SOLUTION OF COMPOSITE MESH PROBLEMS
    Sarraf, S. S.
    Lopez, E. J.
    Rios Rodriguez, G. A.
    Sonzogni, V. E.
    LATIN AMERICAN APPLIED RESEARCH, 2015, 45 (01) : 57 - 63