Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method

被引:54
|
作者
Martinez-Soto, Ricardo [1 ]
Castillo, Oscar [1 ]
Aguilar, Luis T. [2 ]
机构
[1] Tijuana Inst Technol, Fracc Tomas Aquino 22379, Tijuana, Mexico
[2] Inst Politecn Nacl, Mesa De Otay Tijuana 22510, Tijuana, Mexico
关键词
Fuzzy logic controller; Genetic algorithm; Particle swarm optimization; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; SYSTEMS;
D O I
10.1016/j.ins.2014.07.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a Hybrid PSO-GA optimization method for automatic design of fuzzy logic controllers (FLC) to minimize the steady state error of a plant's response. We test the optimal FLC obtained by the Hybrid PSO-GA method using benchmark control plants and an autonomous mobile robot for trajectory tracking control. The bio-inspired method is used to find the parameters of the membership functions of the FLC to obtain the optimal controller for the respective plants. Simulation results show the feasibility of the proposed approach for these control applications. A comparison is also made among the proposed Hybrid PSO-GA, with GA and PSO to determine if there is a significant difference in the results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [41] PSO type-reduction method for geometric interval type-2 fuzzy logic systems
    赵先章
    高一波
    曾隽芳
    杨一平
    Journal of Harbin Institute of Technology, 2008, 15 (06) : 862 - 867
  • [42] Generalized type-2 fuzzy logic in galactic swarm optimization: design of an optimal ball and beam fuzzy controller
    Bernal, Emer
    Castillo, Oscar
    Soria, Jose
    Valdez, Fevrier
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3545 - 3559
  • [43] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 36 - 44
  • [44] Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP
    Mendez, G. M.
    Hernandez, M. A.
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 370 - 374
  • [45] Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic
    Sepulveda, Roberto
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    Montiel, Oscar
    INFORMATION SCIENCES, 2007, 177 (10) : 2023 - 2048
  • [46] Type-1/type-2 fuzzy logic systems optimization with RNA genetic algorithm for double inverted pendulum
    Sun, Zhe
    Wang, Ning
    Bi, Yunrui
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (01) : 70 - 85
  • [47] ODOUR POLLUTION CONTROL USING TYPE-2 FUZZY LOGIC CONTROLLER
    Pohan, Muhammad Aria Rajasa
    Taufiqurrahman, Dhiyaa Rifqi
    Sitanggang, Fernando
    Fitriani, Vania Rheta Luthfia
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (01): : 48 - 57
  • [48] A bacterial foraging optimization approach for tuning type-2 fuzzy logic controller
    Kiani, Mohammad
    Mohammadi, Seyed Mohammad Ali
    Gharaveisi, Ali Akbar
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2013, 21 (01) : 263 - 273
  • [49] Contrasting Singleton Type-1 and Interval Type-2 Non-singleton Type-1 Fuzzy Logic Systems
    Aladi, Jabran Hussain
    Wagner, Christian
    Pourabdollah, Arnir
    Garibaldi, Jonathan M.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2043 - 2050
  • [50] Applying GA Optimization Algorithm for Interval Type-2 Fuzzy Logic Controller Parameters of Multivariable Anesthesia System
    Taheriyan, Fatemeh
    Ghafourian, Mandana Sadat
    Noori, Amin
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1613 - 1618