Non-degeneracy and existence of new solutions for the Schrodinger equations

被引:10
|
作者
Guo, Yuxia [1 ]
Musso, Monica [2 ]
Peng, Shuangjie [3 ]
Yan, Shusen [3 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Somerset, England
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
PERTURBED ELLIPTIC-EQUATIONS; SEMICLASSICAL STATES; MULTIPEAK SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; SYMMETRY; UNIQUENESS; SPHERES;
D O I
10.1016/j.jde.2022.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following nonlinear problem -Delta u + V (|y|)u = u(p), u > 0 in R-N, u is an element of H-1(R-N), (0.1) where V (r) is a positive function, 1 < p < N+2/N-2. We show that the multi-bump solutions constructed in [27] are non-degenerate in a suitable symmetric space. We also use this non-degenerate result to construct new solutions for (0.1). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 279
页数:26
相关论文
共 50 条