We define the generalized second-order directional derivatives by means of the Clarke generalized gradient for locally Lipschitz functions. Then we give characterization of convexity and state a new sufficient optimality condition. (C) 2004 Elsevier Ltd. All rights reserved.
机构:
Univ Paris Saclay, Univ Versailles St Quentin En Yvelines, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, FranceUniv Paris Saclay, Univ Versailles St Quentin En Yvelines, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France
Boulmezaoud, Tahar Z.
论文数: 引用数:
h-index:
机构:
Cieutat, Philippe
Daniilidis, Aris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, UMI CNRS 2807, DIM CMM, Beauchef 851,Torre Norte,Piso 5, Santiago 8370459, ChileUniv Paris Saclay, Univ Versailles St Quentin En Yvelines, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France