On Second-Order Cone Functions

被引:0
|
作者
Jibrin, Shafiu [1 ]
Swift, James W. [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
D O I
10.1155/2024/7090058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the second-order cone function (SOCF) f : R n -> R defined by f x = c T x + d - A x + b , with parameters c is an element of R n , d is an element of R , A is an element of R m x n , and b is an element of R m . Every SOCF is concave. We give necessary and sufficient conditions for strict concavity of f . The parameters A and b are not uniquely determined. We show that every SOCF can be written in the form f x = c T x + d - delta 2 + x - x & lowast; T M x - x & lowast; . We give necessary and sufficient conditions for the parameters c , d , delta , M = A T A , and x & lowast; to be uniquely determined. We also give necessary and sufficient conditions for f to be bounded above.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The convex and monotone functions associated with second-order cone
    Chen, Jein-Shan
    OPTIMIZATION, 2006, 55 (04) : 363 - 385
  • [2] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116
  • [3] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [4] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [5] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [6] Two classes of merit functions for the second-order cone complementarity problem
    Chen, Jein-Shan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 64 (03) : 495 - 519
  • [7] Two classes of merit functions for the second-order cone complementarity problem
    Jein-Shan Chen
    Mathematical Methods of Operations Research, 2006, 64 : 495 - 519
  • [8] DIFFERENTIABLE EXACT PENALTY FUNCTIONS FOR NONLINEAR SECOND-ORDER CONE PROGRAMS
    Fukuda, Ellen H.
    Silva, Paulo J. S.
    Fukushima, Masao
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1607 - 1633
  • [9] On polyhedral approximations of the second-order cone
    Ben-Tal, A
    Nemirovski, A
    MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) : 193 - 205
  • [10] Second-order cone optimization of the gradostat *
    Taylor, Josh A.
    Rapaport, Alain
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 151