On Second-Order Cone Functions

被引:0
|
作者
Jibrin, Shafiu [1 ]
Swift, James W. [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
D O I
10.1155/2024/7090058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the second-order cone function (SOCF) f : R n -> R defined by f x = c T x + d - A x + b , with parameters c is an element of R n , d is an element of R , A is an element of R m x n , and b is an element of R m . Every SOCF is concave. We give necessary and sufficient conditions for strict concavity of f . The parameters A and b are not uniquely determined. We show that every SOCF can be written in the form f x = c T x + d - delta 2 + x - x & lowast; T M x - x & lowast; . We give necessary and sufficient conditions for the parameters c , d , delta , M = A T A , and x & lowast; to be uniquely determined. We also give necessary and sufficient conditions for f to be bounded above.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The Q method for the second-order cone programming
    Alizadeh, F.
    Xia, Yu
    Topics in Applied and Theoretical Mathematics and Computer Science, 2001, : 208 - 213
  • [32] Statistical Inference of Second-Order Cone Programming
    Zhang, Liwei
    Gao, Shengzhe
    Guo, Saoyan
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2019, 36 (02)
  • [33] Second-order symmetric duality with cone constraints
    Gulati, T. R.
    Gupta, S. K.
    Ahmad, I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 347 - 354
  • [34] Statistical Inference of Second-Order Cone Programming
    Wang, Jiani
    Zhang, Liwei
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2018, 35 (06)
  • [35] A one-parametric class of merit functions for the second-order cone complementarity problem
    Chen, Jein-Shan
    Pan, Shaohua
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (03) : 581 - 606
  • [36] A one-parametric class of merit functions for the second-order cone complementarity problem
    Jein-Shan Chen
    Shaohua Pan
    Computational Optimization and Applications, 2010, 45 : 581 - 606
  • [37] A Two-Parametric Class of Merit Functions for the Second-Order Cone Complementarity Problem
    Chi, Xiaoni
    Wan, Zhongping
    Hao, Zijun
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [38] Second-order differentiability of probability functions
    Wim van Ackooij
    Jérôme Malick
    Optimization Letters, 2017, 11 : 179 - 194
  • [39] Second-order differentiability of probability functions
    van Ackooij, Wim
    Malick, Jerome
    OPTIMIZATION LETTERS, 2017, 11 (01) : 179 - 194
  • [40] Transfer Functions of Second-Order Digital Filters with Two Equal Second-Order Modes
    Yamaki, Shunsuke
    Abe, Masahide
    Kawamata, Masayuki
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,