Direct nm-scale spatial mapping of traps in CIGS

被引:0
|
作者
Paul, P. K. [1 ]
Cardwell, D. W. [1 ]
Jackson, C. M. [1 ]
Galiano, K. [2 ]
Aryal, K. [3 ]
Pelz, J. P. [2 ]
Marsillac, S. [3 ]
Ringel, S. A. [1 ,4 ]
Grassman, T. J. [5 ]
Arehart, A. R. [1 ]
机构
[1] Ohio State Univ, Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Old Dominion Univ, Elect & Comp Engn, Norfolk, VA USA
[4] Ohio State Univ, Inst Mat Res, Columbus, OH 43210 USA
[5] Ohio State Univ, Mat Sci & Engn, Columbus, OH 43210 USA
关键词
FILM SOLAR-CELLS; DEFECT PHYSICS; CU(IN; GA)SE-2;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using newly developed nanometer-scale deep level transient (nano-DLTS) spectroscopy, the spatial distribution of the Ev+0.47 eV trap in p-type Cu(In,Ga)Se-2 (CIGS) is mapped simultaneously with topography to correlate the electrical traps with physical structure. It is demonstrated that the Ev+0.47 eV trap properties using nano-DLTS match the observed macroscopic properties. Additionally, the Ev+0.47 eV map reveals that this trap is not uniformly distributed, is likely correlated with specific grain boundaries, and not related to all grain boundaries. The combined multi-scale approach reveals overall trap impact as well as correlation with physical structures on the nm-scale that can be broadly applied to any semiconductor material.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Effect of Image Degradation on nm-scale MEMS FFT optical displacement measurements
    King, Hunter
    Warnat, Stephan
    Hubbard, Ted
    2015 IEEE 28TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2015, : 1387 - 1392
  • [22] FABRICATION OF WEDGE-SHAPED SILICON FIELD EMITTERS WITH NM-SCALE RADII
    LIU, D
    RAVI, TS
    GMITTER, T
    CHEN, CY
    MARCUS, RB
    CHIN, K
    APPLIED PHYSICS LETTERS, 1991, 58 (10) : 1042 - 1043
  • [23] Simulation and verification of void transfer patterning (VTP) technique for nm-scale features
    Josan, Guriqbal Singh
    Devasia, Archana
    Rommel, Sean
    Kurinec, Santosh K.
    MICROELECTRONIC ENGINEERING, 2011, 88 (01) : 53 - 59
  • [24] Device design and manufacturing issues for 10 nm-scale MOSFETs: a computational study
    Hasan, S
    Wang, J
    Lundstrom, M
    SOLID-STATE ELECTRONICS, 2004, 48 (06) : 867 - 875
  • [25] Formation of 10 nm-scale edge quantum wire structures and their excitonic and electronic properties
    Sakaki, H
    Someya, T
    Akiyama, H
    Nakamura, Y
    Kondo, N
    Kishimoto, D
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 164 (01): : 241 - 251
  • [26] 3 nm-scale molecular switching between fluorescent coordination capsule and nonfluorescent cage
    Harano, Koji
    Hiraoka, Shuichi
    Shionoya, Mitsuhiko
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (17) : 5300 - +
  • [27] Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys
    Zhu, Yakun
    Poplawsky, Jonathan D.
    Li, Sirui
    Unocic, Raymond R.
    Bland, Leslie G.
    Taylor, Christopher D.
    Locke, Jenifer S.
    Marquis, Emmanuelle A.
    Frankel, Gerald S.
    ACTA MATERIALIA, 2020, 189 : 204 - 213
  • [28] High-resolution electrical and chemical characterization of nm-scale organic and inorganic devices
    Eyben, Pierre
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 : 318 - 319
  • [29] Self-regulated charge transfer and band tilt in nm-scale polar GaN films
    Tsai, M. -H.
    Dey, S. K.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2006, 36 (02): : 125 - 130
  • [30] Investigation and Simulation of the Effects of nm-Scale γ′ Precipitates on the Recrystallization of Ni-based Superalloys
    Buerstmayr, R.
    Theska, F.
    Kozeschnik, E.
    Webster, R. F.
    Lison-Pick, M.
    Street, S.
    Primig, S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (06): : 2259 - 2276