Direct nm-scale spatial mapping of traps in CIGS

被引:0
|
作者
Paul, P. K. [1 ]
Cardwell, D. W. [1 ]
Jackson, C. M. [1 ]
Galiano, K. [2 ]
Aryal, K. [3 ]
Pelz, J. P. [2 ]
Marsillac, S. [3 ]
Ringel, S. A. [1 ,4 ]
Grassman, T. J. [5 ]
Arehart, A. R. [1 ]
机构
[1] Ohio State Univ, Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Old Dominion Univ, Elect & Comp Engn, Norfolk, VA USA
[4] Ohio State Univ, Inst Mat Res, Columbus, OH 43210 USA
[5] Ohio State Univ, Mat Sci & Engn, Columbus, OH 43210 USA
关键词
FILM SOLAR-CELLS; DEFECT PHYSICS; CU(IN; GA)SE-2;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using newly developed nanometer-scale deep level transient (nano-DLTS) spectroscopy, the spatial distribution of the Ev+0.47 eV trap in p-type Cu(In,Ga)Se-2 (CIGS) is mapped simultaneously with topography to correlate the electrical traps with physical structure. It is demonstrated that the Ev+0.47 eV trap properties using nano-DLTS match the observed macroscopic properties. Additionally, the Ev+0.47 eV map reveals that this trap is not uniformly distributed, is likely correlated with specific grain boundaries, and not related to all grain boundaries. The combined multi-scale approach reveals overall trap impact as well as correlation with physical structures on the nm-scale that can be broadly applied to any semiconductor material.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Direct nm-Scale Spatial Mapping of Traps in CIGS
    Paul, P. K.
    Cardwell, D. W.
    Jackson, C. M.
    Galiano, K.
    Aryal, K.
    Pelz, J. P.
    Marsillac, S.
    Ringel, S. A.
    Grassman, T. J.
    Arehart, A. R.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (05): : 1482 - 1486
  • [2] Three-dimensional STEM with nm-scale spatial resolution
    Tanaka, N
    Murooka, Y
    Koguchi, M
    Kakibayashi, H
    Tsuneta, R
    Kase, K
    Iwaki, M
    ELECTRON MICROSCOPY AND ANALYSIS 2001, 2001, (168): : 159 - 162
  • [3] Chemical compositional non-uniformity and its effects on CIGS solar cell performance at the nm-scale
    Li, Wenjie
    Cohen, Sidney
    Gartsman, Konstantin
    Caballero, Raquel
    van Huth, Palle
    Popovitz-Biro, Ronit
    Cahen, David
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 98 : 78 - 82
  • [4] Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
    Cooper, David
    Denneulin, Thibaud
    Bernier, Nicolas
    Beche, Armand
    Rouviere, Jean-Luc
    MICRON, 2016, 80 : 145 - 165
  • [5] Ice aggregate contacts at the nm-scale
    Aumatell, Guillem
    Wurm, Gerhard
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (01) : 690 - 702
  • [6] Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope
    Nazaretski, E.
    Kim, Jungdae
    Yan, H.
    Lauer, K.
    Eom, D.
    Shu, D.
    Maser, J.
    Pesic, Z.
    Wagner, U.
    Rau, C.
    Chu, Y. S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03):
  • [7] Stability of Charge Distributions in Electret Films on the nm-Scale
    Goedrich, Sebastian
    Schmidt, Hans-Werner
    Papastavrou, Georg
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4500 - 4509
  • [8] Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy
    Cooper, David
    Denneulin, Thibaud
    Barnes, Jean-Paul
    Hartmann, Jean-Michel
    Hutin, Louis
    Le Royer, Cyrille
    Beche, Armand
    Rouviere, Jean-Luc
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
  • [9] Mapping mineralogical heterogeneities at the nm-scale by scanning electron microscopy in modern Sardinian stromatolites: Deciphering the origin of their laminations
    Debrie, Juliette
    Pret, Dimitri
    Menguy, Nicolas
    Esteve, Imene
    Sans-Jofre, Pierre
    Saint Martin, Jean-Paul
    Benzerara, Karim
    CHEMICAL GEOLOGY, 2022, 609
  • [10] APPLICATION OF TITANIUM RIE TO THE FABRICATION OF NM-SCALE STRUCTURES.
    Unger, P.
    Boegli, V.
    Beneking, H.
    Microelectronic Engineering, 1986, 5 (1-4) : 279 - 286