Random matrix theory in lattice statistical mechanics

被引:7
|
作者
d'Auriac, JCA
Maillard, JM
机构
[1] CNRS, Ctr Rech Tres Basses Temp, F-38042 Grenoble, France
[2] Univ Paris 07, LPTHE, F-75252 Paris 05, France
关键词
lattice theory and statistics (Ising; Potts; etc.) lattice fermion models (Hubbard model; etc.);
D O I
10.1016/S0378-4371(02)01756-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this short note we collect together known results on the use of random matrix theory (RMT) in lattice statistical mechanics. The purpose here is two fold. Firstly the RMT analysis provides an intrinsic characterization of integrability, and secondly it appears to be an effective tool to find new integrable models. Various examples from quantum and classical statistical mechanics are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 50 条
  • [21] Statistical properties of eigenstates beyond random matrix theory
    Heller, EJ
    [J]. MOLECULAR PHYSICS, 2006, 104 (08) : 1207 - 1216
  • [22] Continuum Limit of Random Matrix Products in Statistical Mechanics of Disordered Systems
    Comets, Francis
    Giacomin, Giambattista
    Greenblatt, Rafael L.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (01) : 171 - 219
  • [23] Continuum Limit of Random Matrix Products in Statistical Mechanics of Disordered Systems
    Francis Comets
    Giambattista Giacomin
    Rafael L. Greenblatt
    [J]. Communications in Mathematical Physics, 2019, 369 : 171 - 219
  • [24] STATISTICAL-THEORY OF RANDOM ORDERED PHASE IN A BETHE LATTICE
    OGUCHI, T
    UENO, Y
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (16): : 2981 - 2984
  • [25] STATISTICAL-THEORY OF RANDOM ORDERED PHASE IN A BETHE LATTICE
    OGUCHI, T
    UENO, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (02) : 406 - 414
  • [26] Random partitions in statistical mechanics
    Ercolani, Nicholas M.
    Jansen, Sabine
    Ueltschi, Daniel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [27] Statistical mechanics of random graphs
    Burda, Z
    Jurkiewicz, J
    Krzywicki, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 344 (1-2) : 56 - 61
  • [28] Statistical mechanics of random heteropolymers
    [J]. Phys Rep, 1-6 (77):
  • [29] Statistical mechanics of random heteropolymers
    Sfatos, CD
    Shakhnovich, EI
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 288 (1-6): : 77 - 108
  • [30] The statistical mechanics of random copolymers
    Soteros, CE
    Whittington, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (41): : R279 - R325