Random partitions in statistical mechanics

被引:6
|
作者
Ercolani, Nicholas M. [1 ]
Jansen, Sabine [2 ]
Ueltschi, Daniel [3 ]
机构
[1] Univ Arizona, Tucson, AZ 85721 USA
[2] Ruhr Univ Bochum, Bochum, Germany
[3] Univ Warwick, Coventry CV4 7AL, W Midlands, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Spatial random partitions; Bose-Einstein condensation; (inhomogeneous) zero-range process; chain of Chinese restaurants; sums of independent random variables; heavy-tailed variables; infinitely divisible laws; SPATIAL RANDOM PERMUTATIONS; COMBINATORIAL PARTITIONS; ASYMPTOTIC-BEHAVIOR; BOSE-GAS; LIMIT; CONDENSATION; COAGULATION; DISTRIBUTIONS; STATIONARY; MODELS;
D O I
10.1214/EJP.v19-3244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of distributions on spatial random partitions that provide a coupling between different models of interest: the ideal Bose gas; the zero-range process; particle clustering; and spatial permutations. These distributions are invariant for a "chain of Chinese restaurants" stochastic process. We obtain results for the distribution of the size of the largest component.
引用
下载
收藏
页数:37
相关论文
共 50 条