Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
|
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
  • [21] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [22] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    [J]. BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [23] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [24] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    [J]. Scientific Reports, 13
  • [25] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    [J]. CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [27] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    [J]. BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [28] ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data
    Zhang, Wenfei
    Wei, Ying
    Zhang, Donghui
    Xu, Ethan Y.
    [J]. BIOINFORMATICS, 2020, 36 (10) : 3124 - 3130
  • [29] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593
  • [30] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    [J]. Nature Biotechnology, 2016, 34 : 591 - 593