Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
|
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
  • [1] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    [J]. NATURE METHODS, 2017, 14 (06) : 584 - +
  • [2] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    [J]. BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [3] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    [J]. Nature Methods, 2017, 14 : 584 - 586
  • [4] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    [J]. FRONTIERS IN GENETICS, 2020, 11
  • [5] Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    Christoph Hafemeister
    Rahul Satija
    [J]. Genome Biology, 20
  • [6] Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    Hafemeister, Christoph
    Satija, Rahul
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [7] Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
    Lause, Jan
    Berens, Philipp
    Kobak, Dmitry
    [J]. GENOME BIOLOGY, 2021, 22 (01)
  • [8] Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
    Jan Lause
    Philipp Berens
    Dmitry Kobak
    [J]. Genome Biology, 22
  • [9] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [10] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    [J]. Genome Biology, 20