Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data

被引:45
|
作者
Lause, Jan [1 ]
Berens, Philipp [1 ,2 ,3 ,4 ]
Kobak, Dmitry [1 ]
机构
[1] Univ Tubingen, Inst Ophthalm Res, Tubingen, Germany
[2] Univ Tubingen, Inst Bioinformat & Med Informat, Tubingen, Germany
[3] Univ Tubingen, Bernstein Ctr Computat Neurosci, Tubingen, Germany
[4] Univ Tubingen, Ctr Integrat Neurosci, Tubingen, Germany
基金
美国国家卫生研究院;
关键词
MOTOR-VEHICLE CRASHES; POISSON-GAMMA MODELS; SAMPLE-MEAN VALUES; SIZE;
D O I
10.1186/s13059-021-02451-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Standard preprocessing of single-cell RNA-seq UMI data includes normalization by sequencing depth to remove this technical variability, and nonlinear transformation to stabilize the variance across genes with different expression levels. Instead, two recent papers propose to use statistical count models for these tasks: Hafemeister and Satija (Genome Biol 20:296, 2019) recommend using Pearson residuals from negative binomial regression, while Townes et al. (Genome Biol 20:295, 2019) recommend fitting a generalized PCA model. Here, we investigate the connection between these approaches theoretically and empirically, and compare their effects on downstream processing. Results We show that the model of Hafemeister and Satija produces noisy parameter estimates because it is overspecified, which is why the original paper employs post hoc smoothing. When specified more parsimoniously, it has a simple analytic solution equivalent to the rank-one Poisson GLM-PCA of Townes et al. Further, our analysis indicates that per-gene overdispersion estimates in Hafemeister and Satija are biased, and that the data are in fact consistent with the overdispersion parameter being independent of gene expression. We then use negative control data without biological variability to estimate the technical overdispersion of UMI counts, and find that across several different experimental protocols, the data are close to Poisson and suggest very moderate overdispersion. Finally, we perform a benchmark to compare the performance of Pearson residuals, variance-stabilizing transformations, and GLM-PCA on scRNA-seq datasets with known ground truth. Conclusions We demonstrate that analytic Pearson residuals strongly outperform other methods for identifying biologically variable genes, and capture more of the biologically meaningful variation when used for dimensionality reduction.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
    Jan Lause
    Philipp Berens
    Dmitry Kobak
    [J]. Genome Biology, 22
  • [2] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    [J]. NATURE METHODS, 2017, 14 (06) : 584 - +
  • [3] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    [J]. BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [4] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    [J]. Nature Methods, 2017, 14 : 584 - 586
  • [5] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    [J]. FRONTIERS IN GENETICS, 2020, 11
  • [6] Resistant Fit Regression Normalization for Single-cell RNA-seq Data
    Kuang, Da
    Kim, Junhyong
    [J]. 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 236 - 240
  • [7] Non-linear Normalization for Non-UMI Single Cell RNA-Seq
    Wu, Zhijin
    Su, Kenong
    Wu, Hao
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [8] Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
    Yue You
    Luyi Tian
    Shian Su
    Xueyi Dong
    Jafar S. Jabbari
    Peter F. Hickey
    Matthew E. Ritchie
    [J]. Genome Biology, 22
  • [9] Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
    You, Yue
    Tian, Luyi
    Su, Shian
    Dong, Xueyi
    Jabbari, Jafar S.
    Hickey, Peter F.
    Ritchie, Matthew E.
    [J]. GENOME BIOLOGY, 2021, 22 (01)
  • [10] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)