A tight bound on negativity of superpositions

被引:6
|
作者
Ma, K. -H. [1 ]
Yu, C. S. [1 ]
Song, H. S. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2010年 / 59卷 / 02期
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT; STATE;
D O I
10.1140/epjd/e2010-00150-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By a variational definition of the entanglement measure - negativity, we derive an upper bound of negativity of superpositions in terms of the negativities of the quantum states being superposed. It is shown that the upper bound has a simple formulation. In particular, in many cases the upper bound is tighter than the previous bounds.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [21] A tight lower bound for the hardness of clutters
    Mkrtchyan, Vahan
    Sargsyan, Hovhannes
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 21 - 25
  • [22] A Tight Uniform Continuity Bound for Equivocation
    Alhejji, Mohammad A.
    Smith, Graeme
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2270 - 2274
  • [23] Tight Bound on NewHope Failure Probability
    Plantard, Thomas
    Sipasseuth, Arnaud
    Susilo, Willy
    Zucca, Vincent
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) : 1955 - 1965
  • [24] A TIGHT AMORTIZED BOUND FOR PATH REVERSAL
    GINAT, D
    SLEATOR, DD
    TARJAN, RE
    [J]. INFORMATION PROCESSING LETTERS, 1989, 31 (01) : 3 - 5
  • [25] The Shannon Lower Bound Is Asymptotically Tight
    Koch, Tobias
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6155 - 6161
  • [26] A tight bound on the irregularity strength of graphs
    Nierhoff, T
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (03) : 313 - 323
  • [27] A graph for which the inertia bound is not tight
    John Sinkovic
    [J]. Journal of Algebraic Combinatorics, 2018, 47 : 39 - 50
  • [28] Tight bound on mobile Byzantine Agreement
    Bonnet, Francois
    Delfago, Xavier
    Nguyen, Thanh Dang
    Potop-Butucaru, Maria
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 609 : 361 - 373
  • [29] THE DETERMINANT BOUND FOR DISCREPANCY IS ALMOST TIGHT
    Matousek, Jiri
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 451 - 460
  • [30] A graph for which the inertia bound is not tight
    Sinkovic, John
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (01) : 39 - 50