A tight bound on the irregularity strength of graphs

被引:108
|
作者
Nierhoff, T [1 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
irregular assignments; irregularity strength; congruence method;
D O I
10.1137/S0895480196314291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An assignment of positive integer weights to the edges of a simple graph G is called irregular if the weighted degrees of the vertices are different. The irregularity strength s(G) is the maximal weight, minimized over all irregular assignments. It is set to oo if no such assignment is possible. Let G not equal K-3 be a graph on n vertices, with s(G) < infinity. Aigner and Triesch [SIAM J. Discrete Math, 3 (1990), pp. 439-449] used the congruence method to construct irregular assignments, showing s(G) less than or equal to n -1 if G is connected and s(G) less than or equal to n + 1 in general. We refine the congruence method in the disconnected case and show that s(G) less than or equal to n - 1 holds for all graphs with s(G) finite, except for K-3. This is tight and settles a conjecture of Aigner and Triesch.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 50 条
  • [1] BOUND ON THE IRREGULARITY STRENGTH OF REGULAR GRAPHS
    FAUDREE, RJ
    LEHEL, J
    [J]. COMBINATORICS /, 1988, 52 : 247 - 256
  • [3] A NEW UPPER BOUND FOR THE IRREGULARITY STRENGTH OF GRAPHS
    Kalkowski, M.
    Karonski, M.
    Pfender, F.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1319 - 1321
  • [4] A new upper bound for the total vertex irregularity strength of graphs
    Anholcer, Marcin
    Kalkowski, Maciej
    Przybylo, Jakub
    [J]. DISCRETE MATHEMATICS, 2009, 309 (21) : 6316 - 6317
  • [5] The Irregularity and Modular Irregularity Strength of Fan Graphs
    Baca, Martin
    Kimakova, Zuzana
    Lascsakova, Marcela
    Semanicova-Fenovcikova, Andrea
    [J]. SYMMETRY-BASEL, 2021, 13 (04):
  • [6] Irregularity strength of dense graphs
    Cuckler, Bill
    Lazebnik, Felix
    [J]. JOURNAL OF GRAPH THEORY, 2008, 58 (04) : 299 - 313
  • [7] Irregularity strength of regular graphs
    Przybylo, Jakub
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [8] Modular irregularity strength of graphs
    Baca, Martin
    Muthugurupackiam, K.
    Kathiresan, K. M.
    Ramya, S.
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) : 435 - 443
  • [9] Product irregularity strength of graphs
    Anholcer, Marcin
    [J]. DISCRETE MATHEMATICS, 2009, 309 (22) : 6434 - 6439
  • [10] Distant irregularity strength of graphs
    Przybylo, Jakub
    [J]. DISCRETE MATHEMATICS, 2013, 313 (24) : 2875 - 2880