Mean-field approximation of quantum systems and classical limit

被引:37
|
作者
Graffi, S [1 ]
Martinez, A
Pulvirenti, M
机构
[1] Univ Bologna, Dipartmento Matemat, I-40126 Bologna, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
来源
关键词
mean field approximation; classical limit; Vlasov equation; Hartree equation;
D O I
10.1142/S0218202503002386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for a smooth two-body potential, the quantum mean-field approximation to the nonlinear Schrodinger equation of the Hartree type is stable at the classical limit h --> 0, yielding the classical Vlasov equation.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
  • [21] Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System
    Federica Pezzotti
    Mario Pulvirenti
    [J]. Annales Henri Poincaré, 2009, 10 : 145 - 187
  • [22] THE MEAN-FIELD LIMIT OF QUANTUM BOSE GASES AT POSITIVE TEMPERATURE
    Froehlich, Juerg
    Knowles, Antti
    Schlein, Benjamin
    Sohinger, Vedran
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, : 955 - 1030
  • [23] Memory effects in classical and quantum mean-field disordered models
    L. F. Cugliandolo
    G. Lozano
    H. Lozza
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 41 : 87 - 96
  • [24] Memory effects in classical and quantum mean-field disordered models
    Cugliandolo, L
    Lozano, G
    Lozza, H
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 41 (01): : 87 - 96
  • [25] The mean-field approximation in quantum electrodynamics: The no-photon case
    Hainzl, Christian
    Lewin, Mathieu
    Solovej, Jan Philip
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (04) : 546 - 596
  • [26] Quantized mean-field approximation
    Brooksby, C
    Prezhdo, OV
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 346 (5-6) : 463 - 469
  • [27] Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions
    Ben Porat, Immanuel
    Golse, Francois
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (02)
  • [28] Mean-field theory of the transverse-field Ising spin glass in the classical limit
    Li, MS
    Walasek, K
    Cieplak, M
    [J]. PHYSICAL REVIEW B, 1997, 56 (18): : 11715 - 11720
  • [29] Pickl’s proof of the quantum mean-field limit and quantum Klimontovich solutions
    Immanuel Ben Porat
    François Golse
    [J]. Letters in Mathematical Physics, 114
  • [30] Instantaneous control of interacting particle systems in the mean-field limit
    Burger, Martin
    Pinnau, Rene
    Totzeck, Claudia
    Tse, Oliver
    Roth, Andreas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405