Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions

被引:0
|
作者
Ben Porat, Immanuel [1 ]
Golse, Francois [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX26GG, England
[2] Ecole Polytech, CMLS, CNRS, IP Paris, F-91128 Palaiseau, France
关键词
Schrodinger equation; Hartree equation; Mean-field limit; Klimontovich solution; VLASOV EQUATIONS; APPROXIMATION; DYNAMICS;
D O I
10.1007/s11005-023-01768-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses the mean-field limit for the quantum dynamics of N identical bosons in R 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{R}}<^>3$$\end{document} interacting via a binary potential with Coulomb-type singularity. Our approach is based on the theory of quantum Klimontovich solutions defined in Golse and Paul (Commun Math Phys 369:1021-1053, 2019) . Our first main result is a definition of the interaction nonlinearity in the equation governing the dynamics of quantum Klimontovich solutions for a class of interaction potentials slightly less general than those considered in Kato (Trans Am Math Soc 70:195-211, 1951). Our second main result is a new operator inequality satisfied by the quantum Klimontovich solution in the case of an interaction potential with Coulomb-type singularity. When evaluated on an initial bosonic pure state, this operator inequality reduces to a Gronwall inequality for a functional introduced in Pickl (Lett Math Phys 97:151-164, 2011), resulting in a convergence rate estimate for the quantum mean-field limit leading to the time-dependent Hartree equation.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Pickl’s proof of the quantum mean-field limit and quantum Klimontovich solutions
    Immanuel Ben Porat
    François Golse
    [J]. Letters in Mathematical Physics, 114
  • [2] The classical limit of mean-field quantum spin systems
    van de Ven, Christiaan J. F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [3] Mean-field approximation of quantum systems and classical limit
    Graffi, S
    Martinez, A
    Pulvirenti, M
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (01): : 59 - 73
  • [4] Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit
    François Golse
    Thierry Paul
    [J]. Communications in Mathematical Physics, 2019, 369 : 1021 - 1053
  • [5] Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit
    Golse, Francois
    Paul, Thierry
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1021 - 1053
  • [6] Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System
    Pezzotti, Federica
    Pulvirenti, Mario
    [J]. ANNALES HENRI POINCARE, 2009, 10 (01): : 145 - 187
  • [7] THE MEAN-FIELD LIMIT OF QUANTUM BOSE GASES AT POSITIVE TEMPERATURE
    Froehlich, Juerg
    Knowles, Antti
    Schlein, Benjamin
    Sohinger, Vedran
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, : 955 - 1030
  • [8] HEISENBERG PICTURE OF QUANTUM KINETIC EVOLUTION IN MEAN-FIELD LIMIT
    Viktor, Gerasimenko
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (01) : 385 - 399
  • [9] Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System
    Federica Pezzotti
    Mario Pulvirenti
    [J]. Annales Henri Poincaré, 2009, 10 : 145 - 187
  • [10] On quantum mean-field models and their quantum annealing
    Bapst, Victor
    Semerjian, Guilhem
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,