Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach

被引:24
|
作者
Onate, Eugenio [1 ]
Valls, Alelx [1 ]
Garcia, Julio [1 ]
机构
[1] Univ Politecn Cataluna, Int Ctr Numer Methods Engn CIMNE, Barcelona 08034, Spain
关键词
incompressible flows; high Reynolds numbers; finite calculus; finite element method;
D O I
10.1016/j.jcp.2007.02.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a formulation for incompressible flows analysis using the finite element method (FEM). The necessary stabilization for dealing with convective effects and the incompressibility condition is modeled via the finite calculus (FTC) method. The stabilization terms introduced by the FTC formulation allow to solve a wide range of fluid flow problems for low and high Reynolds numbers flows without the need for a turbulence model. Examples of application of the FIC/FEM formulation to the analysis of 2D and 3D incompressible flows with moderate and large Reynolds numbers are presented. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 351
页数:20
相关论文
共 50 条
  • [31] Finite element analysis for 3-D high Reynolds number flows
    Kakuda, K
    Tosaka, N
    Nakamura, T
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1996, 7 (1-2) : 163 - 178
  • [32] FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers
    E. Oñate
    A. Valls
    J. García
    [J]. Computational Mechanics, 2006, 38 : 440 - 455
  • [33] FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers
    Onate, E.
    Valls, A.
    Garcia, J.
    [J]. COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 440 - 455
  • [34] Modeling incompressible flows using a finite particle method
    Liu, MB
    Xie, WP
    Liu, GR
    [J]. APPLIED MATHEMATICAL MODELLING, 2005, 29 (12) : 1252 - 1270
  • [35] ON SOME DRAWBACKS AND POSSIBLE IMPROVEMENTS OF A LAGRANGIAN FINITE ELEMENT APPROACH FOR SIMULATING INCOMPRESSIBLE FLOWS
    Cerquaglia, Marco Lucio
    Deliege, Geoffrey
    Boman, Romain
    Papeleux, Luc
    Terrapon, Vincent
    Ponthot, Jean-Philippe
    [J]. PARTICLE-BASED METHODS IV-FUNDAMENTALS AND APPLICATIONS, 2015, : 1081 - 1092
  • [36] Local and parallel finite element algorithms for magnetohydrodynamic flows with low electromagnetic Reynolds number
    Shilin Mi
    Guangzhi Du
    Yao Rong
    [J]. Numerical Algorithms, 2023, 93 : 1661 - 1683
  • [37] Local and parallel finite element algorithms for magnetohydrodynamic flows with low electromagnetic Reynolds number
    Mi, Shilin
    Du, Guangzhi
    Rong, Yao
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (04) : 1661 - 1683
  • [38] COMPARISON OF FINITE-ELEMENT AND FINITE-VOLUME METHODS FOR INCOMPRESSIBLE VISCOUS FLOWS
    NAKAJIMA, K
    KALLINDERIS, Y
    [J]. AIAA JOURNAL, 1994, 32 (05) : 1090 - 1093
  • [39] Modeling low Reynolds number incompressible flows using SPH
    Morris, JP
    Fox, PJ
    Zhu, Y
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (01) : 214 - 226
  • [40] An hybrid finite volume-finite element method for variable density incompressible flows
    Calgaro, Caterina
    Creuse, Emmanuel
    Goudon, Thierry
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) : 4671 - 4696