An hybrid finite volume-finite element method for variable density incompressible flows

被引:50
|
作者
Calgaro, Caterina [2 ,3 ]
Creuse, Emmanuel [1 ,3 ]
Goudon, Thierry [2 ,3 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, FR CNRS 2956, Lab Math & Appl Valenciennes, F-59313 Valenciennes 09, France
[2] Univ Sci & Tech Lille Flandres Artois, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] Ctr Rech INRIA Futurs, Equipe Projet SIMPAF, F-59658 Villeneuve Dascq, France
关键词
incompressible Navier-Stokes equations; variable density flows; finite element method; finite volume method; Rayleigh-Taylor instability;
D O I
10.1016/j.jcp.2008.01.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4671 / 4696
页数:26
相关论文
共 50 条
  • [1] A Hybrid Finite Volume-Finite Element Method for Modeling Flows in Fractured Media
    Chernyshenko, Alexey
    Olshahskii, Maxim
    Vassilevski, Yuri
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 527 - 535
  • [2] STABILITY AND CONVERGENCE OF AN HYBRID FINITE VOLUME-FINITE ELEMENT METHOD FOR A MULTIPHASIC INCOMPRESSIBLE FLUID MODEL
    Calgaro, Caterina
    Ezzoug, Meriem
    Zahrouni, Ezzeddine
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (02) : 429 - 448
  • [3] A projection hybrid high order finite volume/finite element method for incompressible turbulent flows
    Busto, S.
    Ferrin, J. L.
    Toro, E. F.
    Vazquez-Cendon, M. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 169 - 192
  • [4] Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows
    Xia, Yidong
    Wang, Chuanjin
    Luo, Hong
    Christon, Mark
    Bakosi, Jozsef
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 653 - 669
  • [5] Development of a hybrid finite volume/element solver for incompressible flows
    Tu, Shuangzhang
    Aliabadi, Shahrouz
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 55 (02) : 177 - 203
  • [6] A Hybrid Streamline Upwind Finite Volume-Finite Element Method for Semiconductor Continuity Equations
    Wang, Da-Wei
    Zhao, Wen-Sheng
    Zhang, Zheng-Min
    Liu, Qi
    Xie, Hao
    Chen, Wenchao
    Yin, Wen-Yan
    Wang, Gaofeng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) : 5421 - 5429
  • [7] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Gao, Wei
    Liu, Ruxun
    ACTA MECHANICA SINICA, 2009, 25 (06) : 747 - 760
  • [8] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Wei Gao
    Ruxun Liu
    Acta Mechanica Sinica, 2009, 25 : 747 - 760
  • [9] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Wei Gao Ruxun Liu Department of Mathematics
    Acta Mechanica Sinica, 2009, 25 (06) : 747 - 760
  • [10] Combined finite volume-finite element method for shallow water equations
    Wang, JW
    Liu, RX
    COMPUTERS & FLUIDS, 2005, 34 (10) : 1199 - 1222