Supervised latent Dirichlet allocation with a mixture of sparse softmax

被引:19
|
作者
Li, Xiaoxu [1 ,2 ]
Ma, Zhanyu [1 ]
Peng, Pai [3 ]
Guo, Xiaowei [3 ]
Huang, Feiyue [3 ]
Wang, Xiaojie [4 ]
Guo, Jun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Gansu, Peoples R China
[3] Tecent Technol Shanghai Co Ltd, YoutuLab, Shanghai 200233, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Supervised topic model; Ensemble classification; Mixture of softmax model; Latent Dirichlet allocation; MODELS; SCALE;
D O I
10.1016/j.neucom.2018.05.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real data often show that from appearance within-class similarity is relatively low and between-class similarity is relatively high, which could increase the difficulty of classification. To classify this kind of data effectively, we learn multiple classification criteria simultaneously, and make different classification criterion be applied to classify different data for the purpose of relieving difficulty of fitting this kind of data and class label only by using a single classifier. Considering that topic model can learn high-level semantic features of the original data, and that mixture of softmax model is an efficient and effective probabilistic ensemble classification method, we embed a mixture of softmax model into latent Dirichlet allocation model, and propose a supervised topic model, supervised latent Dirichlet allocation with a mixture of softmax, and its improved version, supervised latent Dirichlet allocation with a mixture of sparse softmax. Next, we give their parameter estimation algorithms based on variational Expectation Maximization (EM) method. Moreover, we give an approximation method to classify unseen data, and analyze the convergence of the parameter estimation algorithm. Finally, we demonstrate the effectiveness of the proposed models by comparing them with some recently proposed approaches on two real image datasets and one text dataset. The experimental results demonstrate the good performance of the proposed models. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 50 条
  • [31] Parallel Latent Dirichlet Allocation on GPUs
    Moon, Gordon E.
    Nisa, Israt
    Sukumaran-Rajam, Aravind
    Bandyopadhyay, Bortik
    Parthasarathy, Srinivasan
    Sadayappan, P.
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 259 - 272
  • [32] Distributed Latent Dirichlet Allocation on Streams
    Guo, Yunyan
    Li, Jianzhong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (01)
  • [33] Selecting Priors for Latent Dirichlet Allocation
    Syed, Shaheen
    Spruit, Marco
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 194 - 202
  • [34] Latent IBP Compound Dirichlet Allocation
    Archambeau, Cedric
    Lakshminarayanan, Balaji
    Bouchard, Guillaume
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 321 - 333
  • [35] Crowd labeling latent Dirichlet allocation
    Luca Pion-Tonachini
    Scott Makeig
    Ken Kreutz-Delgado
    Knowledge and Information Systems, 2017, 53 : 749 - 765
  • [36] Slow mixing for Latent Dirichlet Allocation
    Jonasson, Johan
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 96 - 100
  • [37] Labeled Phrase Latent Dirichlet Allocation
    Tang, Yi-Kun
    Mao, Xian-Ling
    Huang, Heyan
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2016, PT I, 2016, 10041 : 525 - 536
  • [38] Bibliometric Analysis of Latent Dirichlet Allocation
    Garg, Mohit
    Rangra, Priya
    DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY, 2022, 42 (02): : 105 - 113
  • [39] A Spectral Algorithm for Latent Dirichlet Allocation
    Anandkumar, Anima
    Foster, Dean P.
    Hsu, Daniel
    Kakade, Sham M.
    Liu, Yi-Kai
    ALGORITHMICA, 2015, 72 (01) : 193 - 214
  • [40] A Spectral Algorithm for Latent Dirichlet Allocation
    Anima Anandkumar
    Dean P. Foster
    Daniel Hsu
    Sham M. Kakade
    Yi-Kai Liu
    Algorithmica, 2015, 72 : 193 - 214