Supervised latent Dirichlet allocation with a mixture of sparse softmax

被引:19
|
作者
Li, Xiaoxu [1 ,2 ]
Ma, Zhanyu [1 ]
Peng, Pai [3 ]
Guo, Xiaowei [3 ]
Huang, Feiyue [3 ]
Wang, Xiaojie [4 ]
Guo, Jun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Gansu, Peoples R China
[3] Tecent Technol Shanghai Co Ltd, YoutuLab, Shanghai 200233, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Supervised topic model; Ensemble classification; Mixture of softmax model; Latent Dirichlet allocation; MODELS; SCALE;
D O I
10.1016/j.neucom.2018.05.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real data often show that from appearance within-class similarity is relatively low and between-class similarity is relatively high, which could increase the difficulty of classification. To classify this kind of data effectively, we learn multiple classification criteria simultaneously, and make different classification criterion be applied to classify different data for the purpose of relieving difficulty of fitting this kind of data and class label only by using a single classifier. Considering that topic model can learn high-level semantic features of the original data, and that mixture of softmax model is an efficient and effective probabilistic ensemble classification method, we embed a mixture of softmax model into latent Dirichlet allocation model, and propose a supervised topic model, supervised latent Dirichlet allocation with a mixture of softmax, and its improved version, supervised latent Dirichlet allocation with a mixture of sparse softmax. Next, we give their parameter estimation algorithms based on variational Expectation Maximization (EM) method. Moreover, we give an approximation method to classify unseen data, and analyze the convergence of the parameter estimation algorithm. Finally, we demonstrate the effectiveness of the proposed models by comparing them with some recently proposed approaches on two real image datasets and one text dataset. The experimental results demonstrate the good performance of the proposed models. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 50 条
  • [21] Latent Dirichlet mixture model
    Chien, Jen-Tzung
    Lee, Chao-Hsi
    Tan, Zheng-Hua
    NEUROCOMPUTING, 2018, 278 : 12 - 22
  • [22] AUGMENTED LATENT DIRICHLET ALLOCATION (LDA) TOPIC MODEL WITH GAUSSIAN MIXTURE TOPICS
    Prabhudesai, Kedar S.
    Mainsah, Boyla O.
    Collins, Leslie M.
    Throckmorton, Chandra S.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2451 - 2455
  • [23] Sequential latent Dirichlet allocation
    Du, Lan
    Buntine, Wray
    Jin, Huidong
    Chen, Changyou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (03) : 475 - 503
  • [24] Collective Latent Dirichlet Allocation
    Shen, Zhi-Yong
    Sun, Jun
    Shen, Yi-Dong
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 1019 - 1024
  • [25] The Security of Latent Dirichlet Allocation
    Mei, Shike
    Zhu, Xiaojin
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 681 - 689
  • [26] Sequential latent Dirichlet allocation
    Lan Du
    Wray Buntine
    Huidong Jin
    Changyou Chen
    Knowledge and Information Systems, 2012, 31 : 475 - 503
  • [27] Automated classification of software change messages by semi-supervised Latent Dirichlet Allocation
    Fu, Ying
    Yan, Meng
    Zhang, Xiaohong
    Xu, Ling
    Yang, Dan
    Kymer, Jeffrey D.
    INFORMATION AND SOFTWARE TECHNOLOGY, 2015, 57 : 369 - 377
  • [28] Boosted Multi-Modal Supervised Latent Dirichlet Allocation for Social Event Classification
    Qian, Shengsheng
    Zhang, Tianzhu
    Xu, Changsheng
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1999 - 2004
  • [29] Supervised Latent Dirichlet Allocation With Covariates: A Bayesian Structural and Measurement Model of Text and Covariates
    Wilcox, Kenneth Tyler
    Jacobucci, Ross
    Zhang, Zhiyong
    Ammerman, Brooke A. A.
    PSYCHOLOGICAL METHODS, 2023, 28 (05) : 1178 - 1206
  • [30] Inference for the Number of Topics in the Latent Dirichlet Allocation Model via Bayesian Mixture Modeling
    Chen, Zhe
    Doss, Hani
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) : 567 - 585